Suppr超能文献

利用中红外紧聚焦光束对硅进行单次飞秒体微加工。

Single-shot femtosecond bulk micromachining of silicon with mid-IR tightly focused beams.

作者信息

Mareev Evgenii, Pushkin Andrey, Migal Ekaterina, Lvov Kirill, Stremoukhov Sergey, Potemkin Fedor

机构信息

Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory bld. 1/2, 119991, Moscow, Russia.

出版信息

Sci Rep. 2022 May 7;12(1):7517. doi: 10.1038/s41598-022-11501-4.

Abstract

Being the second most abundant element on earth after oxygen, silicon remains the working horse for key technologies for the years. Novel photonics platform for high-speed data transfer and optical memory demands higher flexibility of the silicon modification, including on-chip and in-bulk inscription regimes. These are deepness, three-dimensionality, controllability of sizes and morphology of created modifications. Mid-IR (beyond 4 µm) ultrafast lasers provide the required control for all these parameters not only on the surface (as in the case of the lithographic techniques), but also inside the bulk of the semiconductor, paving the way to an unprecedented variety of properties that can be encoded via such an excitation. We estimated the deposited energy density as 6 kJ cm inside silicon under tight focusing of mid-IR femtosecond laser radiation, which exceeds the threshold value determined by the specific heat of fusion (~ 4 kJ cm). In such a regime, we successfully performed single-pulse silicon microstructuring. Using third-harmonic and near-IR microscopy, and molecular dynamics, we demonstrated that there is a low-density region in the center of a micromodification, surrounded by a "ring" with higher density, that could be an evidence of its micro-void structure. The formation of created micromodification could be controlled in situ using third-harmonic generation microscopy. The numerical simulation indicates that single-shot damage becomes possible due to electrons heating in the conduction band up to 8 eV (mean thermal energy) and the subsequent generation of microplasma with an overcritical density of 8.5 × 10 cm. These results promise to be the foundation of a new approach of deep three-dimensional single-shot bulk micromachining of silicon.

摘要

作为地球上仅次于氧的第二丰富元素,硅多年来一直是关键技术的主力军。用于高速数据传输和光学存储的新型光子学平台需要更高的硅改性灵活性,包括片上和体相写入方式。这些方式涉及所创建改性的深度、三维性、尺寸和形态的可控性。中红外(超过4微米)超快激光不仅能像光刻技术那样在表面,还能在半导体内部对所有这些参数提供所需的控制,为通过这种激发可以编码的前所未有的各种特性铺平了道路。我们估计在中红外飞秒激光辐射紧密聚焦下,硅内部的沉积能量密度为6千焦/平方厘米,超过了由熔化比热确定的阈值(约4千焦/平方厘米)。在这种情况下,我们成功地进行了单脉冲硅微结构化。利用三次谐波和近红外显微镜以及分子动力学,我们证明在微改性中心存在一个低密度区域,周围是一个密度较高的“环”,这可能证明其微孔隙结构。所创建的微改性的形成可以使用三次谐波产生显微镜进行原位控制。数值模拟表明,由于导带中的电子加热至8电子伏特(平均热能)以及随后产生超临界密度为8.5×10厘米的微等离子体,单次损伤成为可能。这些结果有望成为硅的深三维单次体相微加工新方法的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b9c/9079093/14f8a3c5085c/41598_2022_11501_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验