Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic.
Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
Small. 2022 Jun;18(22):e2200708. doi: 10.1002/smll.202200708. Epub 2022 May 10.
Titanium miniplates are biocompatible materials used in modern oral and maxillofacial surgery to treat facial bone fractures. However, plate removal is often required due to implant complications. Among them, a biofilm formation on an infected miniplate is associated with severe inflammation, which frequently results in implant failure. In light of this, new strategies to control or treat oral bacterial biofilm are of high interest. Herein, the authors exploit the ability of nanorobots against multispecies bacterial biofilm grown onto facial commercial titanium miniplate implants to simulate pathogenic conditions of the oral microenvironment. The strategy is based on the use of light-driven self-propelled tubular black-TiO /Ag nanorobots, that unlike traditional ones, exhibit an extended absorption and motion actuation from UV to the visible-light range. The motion analysis is performed separately over UV, blue, and green light irradiation and shows different motion behaviors, including a fast rotational motion that decreases with increasing wavelengths. The biomass reduction is monitored by evaluating LIVE/DEAD fluorescent and digital microscope images of bacterial biofilm treated with the nanorobots under motion/no-motion conditions. The current study and the obtained results can bring significant improvements for effective therapy of infected metallic miniplates by biofilm.
钛微型板是现代口腔颌面外科学中用于治疗面骨骨折的生物相容性材料。然而,由于植入物并发症,常常需要将其取出。其中,感染的微型板上生物膜的形成与严重的炎症有关,这经常导致植入物失败。鉴于此,控制或治疗口腔细菌生物膜的新策略受到高度关注。在此,作者利用纳米机器人对抗生长在商用面钛微型板植入物上的多物种细菌生物膜的能力,模拟口腔微环境的致病条件。该策略基于使用光驱动的自推进管状黑 TiO/Ag 纳米机器人,与传统的纳米机器人不同,其吸收和运动驱动范围从紫外光扩展到可见光范围。在紫外光、蓝光和绿光照射下分别进行运动分析,显示出不同的运动行为,包括随着波长的增加而减小的快速旋转运动。通过评估在运动/无运动条件下用纳米机器人处理的细菌生物膜的 LIVE/DEAD 荧光和数字显微镜图像来监测生物量减少。本研究和获得的结果可以为感染金属微型板的有效治疗带来显著的改进。