Suppr超能文献

细菌信号转导能力和复杂性的进化原则。

Evolutionary Principles of Bacterial Signaling Capacity and Complexity.

机构信息

CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.

Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.

出版信息

mBio. 2022 Jun 28;13(3):e0076422. doi: 10.1128/mbio.00764-22. Epub 2022 May 10.

Abstract

Microbes rely on signal transduction systems to sense and respond to environmental changes for survival and reproduction. It is generally known that niche adaptation plays an important role in shaping the signaling repertoire. However, the evolution of bacterial signaling capacity lacks systematic studies with a temporal direction. In particular, it is unclear how complexity evolved from simplicity or vice versa for signaling networks. Here, we examine the evolutionary processes of major signal transduction systems in (formerly ), a phylum with sufficient evolutionary depth and ecological diversity. We discovered that chemosensory system increases complexity by horizontal gene transfer (HGT) of entire chemosensory classes, and different chemosensory classes rarely mix their components. Two-component system gains complexity by atypical histidine kinases fused with receiver domain to achieve multistep or branched signal transduction process. The presence and complexity of c-di-GMP-mediated system is related to the size of signaling network, and c-di-GMP pathways are easy to rewire, since enzymes and effectors can be linked without direct protein-protein interaction. Overall, signaling capacity and complexity rise and drop together in , determined by sensory demand, genetic resources, and coevolution within the genomic context. These findings reflect plausible evolutionary principles for other cellular networks and genome evolution of the domain. Bacteria are capable of sensing and responding to environmental changes by several signal transduction systems with different mechanisms. Much attention is paid to model organisms with complex signaling networks to understand their composition and function, but how a complicated network evolved from a simple one or vice versa lacks systematic studies. Here, we tracked the evolutionary process of each signaling system in a bacterial phylum with robust "eco-evo" framework and summarized the general principles of signaling network evolution. Our findings bridge the gaps in bacterial signaling capacity from highly sophisticated to extremely streamlined, shedding light on rational design of genetic circuitry. This study may serve as a paradigm to examine the complex construction of other cellular networks and genome evolution.

摘要

微生物依赖信号转导系统来感知和响应环境变化,以实现生存和繁殖。人们普遍认为,生态位适应在塑造信号转导谱方面起着重要作用。然而,细菌信号转导能力的进化缺乏具有时间方向的系统研究。特别是,信号网络的复杂性是如何从简单性演变而来的,或者反之亦然,这一点还不清楚。在这里,我们研究了具有足够进化深度和生态多样性的一个门(以前称为)中的主要信号转导系统的进化过程。我们发现,化学感应系统通过整个化学感应类别的水平基因转移(HGT)增加了复杂性,并且不同的化学感应类很少混合其成分。双组分系统通过与受体结构域融合的非典型组氨酸激酶获得复杂性,以实现多步或分支信号转导过程。c-di-GMP 介导的系统的存在和复杂性与信号网络的大小有关,并且 c-di-GMP 途径很容易重新布线,因为酶和效应物可以在没有直接蛋白质-蛋白质相互作用的情况下连接。总体而言,在 中,信号转导能力和复杂性一起上升和下降,这取决于感官需求、遗传资源以及基因组背景内的共同进化。这些发现反映了其他细胞网络和 领域基因组进化的合理进化原则。 细菌能够通过几种具有不同机制的信号转导系统感知和响应环境变化。人们非常关注具有复杂信号网络的模式生物,以了解它们的组成和功能,但复杂网络如何从简单网络演变而来,或者反之亦然,缺乏系统的研究。在这里,我们在一个具有稳健“生态进化”框架的细菌门中追踪了每个信号系统的进化过程,并总结了信号网络进化的一般原则。我们的发现弥合了从高度复杂到极其简化的细菌信号转导能力之间的差距,为遗传电路的合理设计提供了线索。这项研究可以作为检验其他细胞网络复杂结构和基因组进化的范例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/059f/9239204/9cd65bcd7309/mbio.00764-22-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验