Suppr超能文献

深度学习识别乳腺癌的硬度标志物。

Deep learning identification of stiffness markers in breast cancer.

机构信息

Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA.

Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA.

出版信息

Biomaterials. 2022 Jun;285:121540. doi: 10.1016/j.biomaterials.2022.121540. Epub 2022 Apr 27.

Abstract

While essential to our understanding of solid tumor progression, the study of cell and tissue mechanics has yet to find traction in the clinic. Determining tissue stiffness, a mechanical property known to promote a malignant phenotype in vitro and in vivo, is not part of the standard algorithm for the diagnosis and treatment of breast cancer. Instead, clinicians routinely use mammograms to identify malignant lesions and radiographically dense breast tissue is associated with an increased risk of developing cancer. Whether breast density is related to tumor tissue stiffness, and what cellular and non-cellular components of the tumor contribute the most to its stiffness are not well understood. Through training of a deep learning network and mechanical measurements of fresh patient tissue, we create a bridge in understanding between clinical and mechanical markers. The automatic identification of cellular and extracellular features from hematoxylin and eosin (H&E)-stained slides reveals that global and local breast tissue stiffness best correlate with the percentage of straight collagen. Importantly, the percentage of dense breast tissue does not directly correlate with tissue stiffness or straight collagen content.

摘要

尽管对于理解实体瘤进展至关重要,但细胞和组织力学的研究尚未在临床上得到应用。确定组织硬度(一种已知在体外和体内促进恶性表型的力学特性)并不是乳腺癌诊断和治疗标准算法的一部分。相反,临床医生通常使用乳房 X 光检查来识别恶性病变,并且乳腺组织密度较高与癌症发病风险增加相关。尚不清楚乳房密度是否与肿瘤组织硬度有关,以及肿瘤的细胞和非细胞成分对其硬度的贡献最大。通过对深度学习网络的训练和对新鲜患者组织的力学测量,我们在临床和力学标志物之间架起了一座桥梁。从苏木精和伊红(H&E)染色载玻片自动识别细胞和细胞外特征表明,全局和局部乳腺组织硬度与直线胶原的百分比最佳相关。重要的是,致密乳腺组织的百分比与组织硬度或直线胶原含量没有直接相关性。

相似文献

1
Deep learning identification of stiffness markers in breast cancer.
Biomaterials. 2022 Jun;285:121540. doi: 10.1016/j.biomaterials.2022.121540. Epub 2022 Apr 27.
2
A deep learning system to obtain the optimal parameters for a threshold-based breast and dense tissue segmentation.
Comput Methods Programs Biomed. 2020 Oct;195:105668. doi: 10.1016/j.cmpb.2020.105668. Epub 2020 Jul 24.
3
[Automatic Quantification of Breast Density from Mammography Using Deep Learning].
Nihon Hoshasen Gijutsu Gakkai Zasshi. 2021;77(10):1165-1172. doi: 10.6009/jjrt.2021_JSRT_77.10.1165.
4
Breast cancer detection and classification in mammogram using a three-stage deep learning framework based on PAA algorithm.
Artif Intell Med. 2022 Dec;134:102419. doi: 10.1016/j.artmed.2022.102419. Epub 2022 Oct 13.
6
External Validation of a Deep Learning Model for Predicting Mammographic Breast Density in Routine Clinical Practice.
Acad Radiol. 2021 Apr;28(4):475-480. doi: 10.1016/j.acra.2019.12.012. Epub 2020 Feb 20.
7
Global parenchymal texture features based on histograms of oriented gradients improve cancer development risk estimation from healthy breasts.
Comput Methods Programs Biomed. 2019 Aug;177:123-132. doi: 10.1016/j.cmpb.2019.05.022. Epub 2019 May 22.
8
Understanding Clinical Mammographic Breast Density Assessment: a Deep Learning Perspective.
J Digit Imaging. 2018 Aug;31(4):387-392. doi: 10.1007/s10278-017-0022-2.
10
Comparison of a Deep Learning Risk Score and Standard Mammographic Density Score for Breast Cancer Risk Prediction.
Radiology. 2020 Feb;294(2):265-272. doi: 10.1148/radiol.2019190872. Epub 2019 Dec 17.

引用本文的文献

1
Targeting cancer cell stiffness and metastasis with clinical therapeutics.
Clin Exp Metastasis. 2025 Jun 11;42(4):34. doi: 10.1007/s10585-025-10353-2.
2
Three-dimensional assessments are necessary to determine the true, spatially resolved composition of tissues.
Cell Rep Methods. 2025 Jun 16;5(6):101075. doi: 10.1016/j.crmeth.2025.101075. Epub 2025 Jun 9.
3
Integrating finite element analysis and physics-informed neural networks for biomechanical modeling of the human lumbar spine.
N Am Spine Soc J. 2025 Feb 17;22:100598. doi: 10.1016/j.xnsj.2025.100598. eCollection 2025 Jun.
5
Small Extracellular Vesicles Promote Stiffness-mediated Metastasis.
Cancer Res Commun. 2024 May 9;4(5):1240-1252. doi: 10.1158/2767-9764.CRC-23-0431.
6
Tumor-associated fibrosis: a unique mechanism promoting ovarian cancer metastasis and peritoneal dissemination.
Cancer Metastasis Rev. 2024 Sep;43(3):1037-1053. doi: 10.1007/s10555-024-10169-8. Epub 2024 Mar 28.
8
A hybrid breast cancer classification algorithm based on meta-learning and artificial neural networks.
Front Oncol. 2022 Nov 11;12:1042964. doi: 10.3389/fonc.2022.1042964. eCollection 2022.
9
Targeting tumor extracellular matrix activates the tumor-draining lymph nodes.
Cancer Immunol Immunother. 2022 Dec;71(12):2957-2968. doi: 10.1007/s00262-022-03212-6. Epub 2022 May 7.

本文引用的文献

1
Text Data Augmentation for Deep Learning.
J Big Data. 2021;8(1):101. doi: 10.1186/s40537-021-00492-0. Epub 2021 Jul 19.
2
Collagen Fibril Intermolecular Spacing Changes with 2-Propanol: A Mechanism for Tissue Stiffness.
ACS Biomater Sci Eng. 2017 Oct 9;3(10):2524-2532. doi: 10.1021/acsbiomaterials.7b00418. Epub 2017 Sep 13.
3
The relationship of breast density in mammography and magnetic resonance imaging in women with triple negative breast cancer.
Eur J Radiol. 2020 Mar;124:108813. doi: 10.1016/j.ejrad.2020.108813. Epub 2020 Jan 7.
4
Translational AI and Deep Learning in Diagnostic Pathology.
Front Med (Lausanne). 2019 Oct 1;6:185. doi: 10.3389/fmed.2019.00185. eCollection 2019.
6
Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer.
Nat Med. 2019 Jul;25(7):1054-1056. doi: 10.1038/s41591-019-0462-y. Epub 2019 Jun 3.
7
Fiber alignment drives changes in architectural and mechanical features in collagen matrices.
PLoS One. 2019 May 15;14(5):e0216537. doi: 10.1371/journal.pone.0216537. eCollection 2019.
9
Artificial Intelligence and Digital Pathology: Challenges and Opportunities.
J Pathol Inform. 2018 Nov 14;9:38. doi: 10.4103/jpi.jpi_53_18. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验