Ahmadi Mohsen, Biswas Debojit, Paul Rudy, Lin Maohua, Tang Yufei, Cheema Talha S, Engeberg Erik D, Hashemi Javad, Vrionis Frank D
Department of Electrical and Computer Science, Florida Atlantic University, Boca Raton, FL, United States.
Department of Biomedical Engineering, Florida Atlantic University, Boca Raton, FL, United States.
N Am Spine Soc J. 2025 Feb 17;22:100598. doi: 10.1016/j.xnsj.2025.100598. eCollection 2025 Jun.
Comprehending the biomechanical characteristics of the human lumbar spine is crucial for managing and preventing spinal disorders. Precise material properties derived from patient-specific CT scans are essential for simulations to accurately mimic real-life scenarios, which is invaluable in creating effective surgical plans. The integration of Finite Element Analysis (FEA) with Physics-Informed Neural Networks (PINNs) offers significant clinical benefits by automating lumbar spine segmentation and meshing.
We developed a FEA model of the lumbar spine incorporating detailed anatomical and material properties derived from high-quality CT and MRI scans. The model includes vertebrae and intervertebral discs, segmented and meshed using advanced imaging and computational techniques. PINNs were implemented to integrate physical laws directly into the neural network training process, ensuring that the predictions of material properties adhered to the governing equations of mechanics.
The model achieved an accuracy of 94.30% in predicting material properties such as Young's modulus (14.88 GPa for cortical bone and 1.23 MPa for intervertebral discs), Poisson's ratio (0.25 and 0.47, respectively), bulk modulus (9.87 GPa and 6.56 MPa, respectively), and shear modulus (5.96 GPa and 0.42 MPa, respectively). We developed a lumbar spine FEA model using anatomical and material properties from CT and MRI scans. Vertebrae and discs were segmented and meshed with advanced imaging techniques, while PINNs ensured material predictions followed mechanical laws.
The integration of FEA and PINNs allows for accurate, automated prediction of material properties and mechanical behaviors of the lumbar spine, significantly reducing manual input and enhancing reliability. This approach ensures dependable biomechanical simulations and supports the development of personalized treatment plans and surgical strategies, ultimately improving clinical outcomes for spinal disorders. This method improves surgical planning and outcomes, contributing to better patient care and recovery in spinal disorders.
了解人类腰椎的生物力学特性对于管理和预防脊柱疾病至关重要。从患者特定的CT扫描中获得的精确材料属性对于模拟准确模仿现实场景至关重要,这在制定有效的手术计划中具有重要价值。有限元分析(FEA)与物理信息神经网络(PINNs)的集成通过自动化腰椎分割和网格化提供了显著的临床益处。
我们开发了一个腰椎的有限元分析模型,该模型纳入了从高质量CT和MRI扫描中获得的详细解剖学和材料属性。该模型包括椎体和椎间盘,使用先进的成像和计算技术进行分割和网格化。实施物理信息神经网络以将物理定律直接整合到神经网络训练过程中,确保材料属性的预测符合力学控制方程。
该模型在预测材料属性方面达到了94.30%的准确率,例如杨氏模量(皮质骨为14.88 GPa,椎间盘为1.23 MPa)、泊松比(分别为0.25和0.47)、体积模量(分别为9.87 GPa和6.56 MPa)以及剪切模量(分别为5.96 GPa和0.42 MPa)。我们使用来自CT和MRI扫描的解剖学和材料属性开发了一个腰椎有限元分析模型。椎体和椎间盘使用先进的成像技术进行分割和网格化,而物理信息神经网络确保材料预测遵循力学定律。
有限元分析和物理信息神经网络的集成允许对腰椎的材料属性和力学行为进行准确、自动的预测,显著减少人工输入并提高可靠性。这种方法确保了可靠的生物力学模拟,并支持个性化治疗计划和手术策略的制定,最终改善脊柱疾病的临床结果。这种方法改善了手术规划和结果,有助于更好地护理和治疗脊柱疾病患者。