Muhammad Rafique, Shuai Yong, Irfan Ahmed, He-Ping Tan
School of Energy Science and Engineering, Harbin Institute of Technology 92 West Dazhi Street Harbin 150001 PR China
Mehran University of Engineering and Technology SZAB Campus, Khairpur Mirs' Pakistan.
RSC Adv. 2018 Jun 28;8(42):23688-23697. doi: 10.1039/c8ra03484b. eCollection 2018 Jun 27.
In this paper, we calculate the structural, electronic, magnetic and optical parameters of MnO ( = 0-4), cluster-sandwiched bilayer graphene (Gr) systems, utilizing first-principles calculations with van der Waals corrections implemented with density functional theory (DFT). Charge transfer is observed from the graphene layers to the MnO clusters, thus producing a hole doping phenomenon in the graphene layers. The MnO clusters' electronegative nature greatly modifies the electronic structure of bilayer graphene. It is observed that the MnO clusters' incorporation in bilayer graphene converts zero band gap semimetal bilayer graphene to a half metallic or dilute magnetic semiconducting material. Interestingly, the Gr/MnO/Gr complex structure displays indirect band gap semiconductor behavior for both spin channels, and has a ∼20 meV band gap value. The band gap during spin up and spin down band channels increases as the size of MnO is increased in between the graphene layers. Through spin density diagrams, it is revealed that the MnO clusters' incorporation in the graphene layers converts nonmagnetic bilayer graphene to a magnetic substrate. The obtained magnetic moments for Gr/Mn/Gr, Gr/MnO/Gr, Gr/MnO/Gr, Gr/MnO/Gr and Gr/MnO/Gr, sandwiched bilayer graphene systems were found to be 3.53 , 3.03 , 2.46 , 1.03 and 0.00 , respectively. Through density of states (DOS) plots, it is inferred that the d orbitals of the Mn atoms are mainly responsible for the generation of magnetic moments in the given bilayer graphene systems. The optical parameters, specifically absorption, reflectivity and refractive coefficients, were obtained for all given systems. The absorption spectrum of bilayer graphene is improved in the visible range when MnO clusters are sandwiched between the graphene layers. It is revealed that MnO clusters' incorporation in bilayer graphene improves these optical parameters in the low lying energy region. The results obtained during this study provide the basis for future experimental extrapolations to make multilayer graphene systems functional for optoelectronic and spintronic applications.
在本文中,我们利用基于密度泛函理论(DFT)并包含范德华修正的第一性原理计算方法,计算了MnO ( = 0 - 4)夹心双层石墨烯(Gr)体系的结构、电子、磁性和光学参数。观察到电荷从石墨烯层转移到MnO 团簇,从而在石墨烯层中产生空穴掺杂现象。MnO 团簇的电负性极大地改变了双层石墨烯的电子结构。据观察,MnO 团簇掺入双层石墨烯会使零带隙半金属双层石墨烯转变为半金属或稀磁半导体材料。有趣的是,Gr/MnO/Gr复合结构在两个自旋通道中均表现出间接带隙半导体行为,且带隙值约为20 meV。随着石墨烯层间MnO 尺寸的增加,自旋向上和自旋向下能带通道中的带隙增大。通过自旋密度图可知,MnO 团簇掺入石墨烯层会使非磁性双层石墨烯转变为磁性基底。对于夹心双层石墨烯体系Gr/Mn/Gr、Gr/MnO/Gr、Gr/MnO/Gr、Gr/MnO/Gr和Gr/MnO/Gr,所获得的磁矩分别为3.53 、3.03 、2.46 、1.03 和0.00 。通过态密度(DOS)图推断,在给定的双层石墨烯体系中,Mn原子的d轨道主要负责磁矩的产生。获得了所有给定体系的光学参数,特别是吸收系数、反射率和折射率。当MnO 团簇夹在石墨烯层之间时,双层石墨烯的吸收光谱在可见光范围内得到改善。结果表明,MnO 团簇掺入双层石墨烯会在低能量区域改善这些光学参数。本研究期间获得的结果为未来的实验推断提供了基础,以便使多层石墨烯体系在光电子和自旋电子应用中发挥作用。