Optretina Image Reading Team, Barcelona, Spain.
BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
Graefes Arch Clin Exp Ophthalmol. 2022 Oct;260(10):3255-3265. doi: 10.1007/s00417-022-05653-2. Epub 2022 May 14.
This study aims to evaluate the ability of an autonomous artificial intelligence (AI) system for detection of the most common central retinal pathologies in fundus photography.
Retrospective diagnostic test evaluation on a raw dataset of 5918 images (2839 individuals) evaluated with non-mydriatic cameras during routine occupational health checkups. Three camera models were employed: Optomed Aurora (field of view - FOV 50º, 88% of the dataset), ZEISS VISUSCOUT 100 (FOV 40º, 9%), and Optomed SmartScope M5 (FOV 40º, 3%). Image acquisition took 2 min per patient. Ground truth for each image of the dataset was determined by 2 masked retina specialists, and disagreements were resolved by a 3rd retina specialist. The specific pathologies considered for evaluation were "diabetic retinopathy" (DR), "Age-related macular degeneration" (AMD), "glaucomatous optic neuropathy" (GON), and "Nevus." Images with maculopathy signs that did not match the described taxonomy were classified as "Other."
The combination of algorithms to detect any abnormalities had an area under the curve (AUC) of 0.963 with a sensitivity of 92.9% and a specificity of 86.8%. The algorithms individually obtained are as follows: AMD AUC 0.980 (sensitivity 93.8%; specificity 95.7%), DR AUC 0.950 (sensitivity 81.1%; specificity 94.8%), GON AUC 0.889 (sensitivity 53.6% specificity 95.7%), Nevus AUC 0.931 (sensitivity 86.7%; specificity 90.7%).
Our holistic AI approach reaches high diagnostic accuracy at simultaneous detection of DR, AMD, and Nevus. The integration of pathology-specific algorithms permits higher sensitivities with minimal impact on its specificity. It also reduces the risk of missing incidental findings. Deep learning may facilitate wider screenings of eye diseases.
本研究旨在评估自主人工智能(AI)系统在眼底照相中检测最常见的中心视网膜病变的能力。
对在常规健康检查中使用非散瞳相机拍摄的 5918 张图像(2839 人)的原始数据集进行回顾性诊断测试评估。使用了三种相机模型:Optomed Aurora(视野 - FOV 50°,数据集的 88%)、ZEISS VISUSCOUT 100(FOV 40°,9%)和 Optomed SmartScope M5(FOV 40°,3%)。每位患者的图像采集时间为 2 分钟。数据集的每张图像的地面实况由 2 名掩蔽的视网膜专家确定,如果存在分歧,则由第 3 名视网膜专家解决。评估中考虑的特定病变包括“糖尿病性视网膜病变”(DR)、“年龄相关性黄斑变性”(AMD)、“青光眼性视神经病变”(GON)和“痣”。与描述的分类法不匹配的黄斑病变迹象的图像被归类为“其他”。
用于检测任何异常的算法组合的曲线下面积(AUC)为 0.963,灵敏度为 92.9%,特异性为 86.8%。单独获得的算法如下:AMD AUC 0.980(灵敏度 93.8%;特异性 95.7%)、DR AUC 0.950(灵敏度 81.1%;特异性 94.8%)、GON AUC 0.889(灵敏度 53.6%,特异性 95.7%)、痣 AUC 0.931(灵敏度 86.7%,特异性 90.7%)。
我们的整体 AI 方法在同时检测 DR、AMD 和痣时达到了较高的诊断准确性。特定病变算法的集成可在最小影响特异性的情况下提高灵敏度。它还降低了错过偶然发现的风险。深度学习可能有助于更广泛地筛查眼部疾病。