Suppr超能文献

基于深度学习的高效特征金字塔网络在 CT 图像中的精准自动肾脏分割系统。

A deep learning-based precision and automatic kidney segmentation system using efficient feature pyramid networks in computed tomography images.

机构信息

Research Center for Information Technology Innovation, Academia Sinica, Taipei City, (R.O.C.) Taiwan.

Department of Information Management, National Taiwan University, Taipei City, (R.O.C.) Taiwan.

出版信息

Comput Methods Programs Biomed. 2022 Jun;221:106854. doi: 10.1016/j.cmpb.2022.106854. Epub 2022 May 8.

Abstract

This paper proposes an encoder-decoder architecture for kidney segmentation. A hyperparameter optimization process is implemented, including the development of a model architecture, selecting a windowing method and a loss function, and data augmentation. The model consists of EfficientNet-B5 as the encoder and a feature pyramid network as the decoder that yields the best performance with a Dice score of 0.969 on the 2019 Kidney and Kidney Tumor Segmentation Challenge dataset. The proposed model is tested with different voxel spacing, anatomical planes, and kidney and tumor volumes. Moreover, case studies are conducted to analyze segmentation outliers. Finally, five-fold cross-validation and the 3D-IRCAD-01 dataset are used to evaluate the developed model in terms of the following evaluation metrics: the Dice score, recall, precision, and the Intersection over Union score. A new development and application of artificial intelligence algorithms to solve image analysis and interpretation will be demonstrated in this paper. Overall, our experiment results show that the proposed kidney segmentation solutions in CT images can be significantly applied to clinical needs to assist surgeons in surgical planning. It enables the calculation of the total kidney volume for kidney function estimation in ADPKD and supports radiologists or doctors in disease diagnoses and disease progression.

摘要

本文提出了一种用于肾脏分割的编解码器架构。实施了超参数优化过程,包括模型架构的开发、选择窗口方法和损失函数以及数据增强。该模型由 EfficientNet-B5 作为编码器和特征金字塔网络作为解码器组成,在 2019 年肾脏和肾脏肿瘤分割挑战赛数据集上取得了最佳性能,Dice 得分为 0.969。该模型在不同体素间距、解剖平面以及肾脏和肿瘤体积上进行了测试。此外,还进行了案例研究以分析分割异常值。最后,使用五折交叉验证和 3D-IRCAD-01 数据集根据以下评估指标评估所开发的模型:Dice 得分、召回率、精度和交并比得分。本文将展示人工智能算法在解决图像分析和解释方面的新开发和应用。总的来说,我们的实验结果表明,在 CT 图像中提出的肾脏分割解决方案可以很好地应用于临床需求,以帮助外科医生进行手术规划。它可以计算 ADPKD 中肾脏功能估计的总肾脏体积,并支持放射科医生或医生进行疾病诊断和疾病进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验