University of Florida, Intelligent Critical Care Center, Gainesville, FL; Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida.
Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida.
J Surg Res. 2022 Sep;277:372-383. doi: 10.1016/j.jss.2022.04.052. Epub 2022 May 12.
Sepsis has complex, time-sensitive pathophysiology and important phenotypic subgroups. The objective of this study was to use machine learning analyses of blood and urine biomarker profiles to elucidate the pathophysiologic signatures of subgroups of surgical sepsis patients.
This prospective cohort study included 243 surgical sepsis patients admitted to a quaternary care center between January 2015 and June 2017. We applied hierarchical clustering to clinical variables and 42 blood and urine biomarkers to identify phenotypic subgroups in a development cohort. Clinical characteristics and short-term and long-term outcomes were compared between clusters. A naïve Bayes classifier predicted cluster labels in a validation cohort.
The development cohort contained one cluster characterized by early organ dysfunction (cluster I, n = 18) and one cluster characterized by recovery (cluster II, n = 139). Cluster I was associated with higher Acute Physiologic Assessment and Chronic Health Evaluation II (30 versus 16, P < 0.001) and SOFA scores (13 versus 5, P < 0.001), greater prevalence of chronic cardiovascular and renal disease (P < 0.001) and septic shock (78% versus 17%, P < 0.001). Cluster I had higher mortality within 14 d of sepsis onset (11% versus 1.5%, P = 0.001) and within 1 y (44% versus 20%, P = 0.032), and higher incidence of chronic critical illness (61% versus 30%, P = 0.001). The Bayes classifier achieved 95% accuracy and identified two clusters that were similar to development cohort clusters.
Machine learning analyses of clinical and biomarker variables identified an early organ dysfunction sepsis phenotype characterized by inflammation, renal dysfunction, endotheliopathy, and immunosuppression, as well as poor short-term and long-term clinical outcomes.
脓毒症具有复杂的、时敏性的病理生理学特征,并且存在重要的表型亚组。本研究的目的是利用血液和尿液生物标志物谱的机器学习分析来阐明手术脓毒症患者亚组的病理生理特征。
这项前瞻性队列研究纳入了 2015 年 1 月至 2017 年 6 月期间在一家四级保健中心住院的 243 例手术脓毒症患者。我们对临床变量和 42 种血液和尿液生物标志物进行了层次聚类,以确定发展队列中的表型亚组。比较了不同聚类之间的临床特征以及短期和长期结局。朴素贝叶斯分类器预测验证队列中的聚类标签。
发展队列中存在一个以早期器官功能障碍为特征的聚类(聚类 I,n=18)和一个以恢复为特征的聚类(聚类 II,n=139)。聚类 I 与更高的急性生理评估和慢性健康评价 II 评分(30 分比 16 分,P<0.001)和 SOFA 评分(13 分比 5 分,P<0.001)、更常见的慢性心血管和肾脏疾病(P<0.001)和脓毒性休克(78%比 17%,P<0.001)相关。聚类 I 在脓毒症发病后 14 天内死亡率更高(11%比 1.5%,P=0.001)和 1 年内死亡率更高(44%比 20%,P=0.032),慢性危重病的发生率也更高(61%比 30%,P=0.001)。贝叶斯分类器的准确率为 95%,并识别出了与发展队列聚类相似的两个聚类。
对临床和生物标志物变量的机器学习分析确定了一种以炎症、肾功能障碍、血管内皮功能障碍和免疫抑制为特征的早期器官功能障碍性脓毒症表型,以及较差的短期和长期临床结局。