Díaz-Pernas Francisco Javier, Martínez-Zarzuela Mario, Antón-Rodríguez Míriam, González-Ortega David
Department of Signal Theory, Communications and Telematics Engineering, Telecommunications Engineering School, University of Valladolid, 47011 Valladolid, Spain.
Healthcare (Basel). 2021 Feb 2;9(2):153. doi: 10.3390/healthcare9020153.
In this paper, we present a fully automatic brain tumor segmentation and classification model using a Deep Convolutional Neural Network that includes a multiscale approach. One of the differences of our proposal with respect to previous works is that input images are processed in three spatial scales along different processing pathways. This mechanism is inspired in the inherent operation of the Human Visual System. The proposed neural model can analyze MRI images containing three types of tumors: meningioma, glioma, and pituitary tumor, over sagittal, coronal, and axial views and does not need preprocessing of input images to remove skull or vertebral column parts in advance. The performance of our method on a publicly available MRI image dataset of 3064 slices from 233 patients is compared with previously classical machine learning and deep learning published methods. In the comparison, our method remarkably obtained a tumor classification accuracy of 0.973, higher than the other approaches using the same database.
在本文中,我们提出了一种使用深度卷积神经网络的全自动脑肿瘤分割与分类模型,该模型采用了多尺度方法。我们的提议与先前工作的一个不同之处在于,输入图像沿着不同的处理路径在三个空间尺度上进行处理。这种机制的灵感来源于人类视觉系统的固有运作方式。所提出的神经模型可以分析包含三种肿瘤类型(脑膜瘤、胶质瘤和垂体瘤)的MRI图像,涵盖矢状面、冠状面和轴位面视图,并且无需预先对输入图像进行预处理以去除颅骨或脊柱部分。我们将该方法在来自233名患者的3064个切片的公开可用MRI图像数据集上的性能,与先前发表的经典机器学习和深度学习方法进行了比较。在比较中,我们的方法显著获得了0.973的肿瘤分类准确率,高于使用相同数据库的其他方法。