Suppr超能文献

基于全基因组汇总数据的稳健孟德尔随机化分析的互惠因果混合模型。

Reciprocal causation mixture model for robust Mendelian randomization analysis using genome-scale summary data.

机构信息

Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.

State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China.

出版信息

Nat Commun. 2023 Feb 28;14(1):1131. doi: 10.1038/s41467-023-36490-4.

Abstract

Mendelian randomization using GWAS summary statistics has become a popular method to infer causal relationships across complex diseases. However, the widespread pleiotropy observed in GWAS has made the selection of valid instrumental variables problematic, leading to possible violations of Mendelian randomization assumptions and thus potentially invalid inferences concerning causation. Furthermore, current MR methods can examine causation in only one direction, so that two separate analyses are required for bi-directional analysis. In this study, we propose a ststistical framework, MRCI (Mixture model Reciprocal Causation Inference), to estimate reciprocal causation between two phenotypes simultaneously using the genome-scale summary statistics of the two phenotypes and reference linkage disequilibrium information. Simulation studies, including strong correlated pleiotropy, showed that MRCI obtained nearly unbiased estimates of causation in both directions, and correct Type I error rates under the null hypothesis. In applications to real GWAS data, MRCI detected significant bi-directional and uni-directional causal influences between common diseases and putative risk factors.

摘要

孟德尔随机化使用 GWAS 汇总统计数据已成为推断复杂疾病因果关系的一种流行方法。然而,GWAS 中广泛存在的多效性使得有效工具变量的选择成为问题,导致孟德尔随机化假设可能被违反,从而对因果关系的推断产生潜在的影响。此外,当前的 MR 方法只能在一个方向上检验因果关系,因此需要进行两次独立的分析才能进行双向分析。在这项研究中,我们提出了一种统计框架,即 MRCI(混合模型相互因果推断),该框架使用两种表型的全基因组汇总统计数据和参考连锁不平衡信息,同时估计两种表型之间的相互因果关系。模拟研究,包括强相关的多效性,表明 MRCI 在两个方向上都获得了几乎无偏的因果估计,并且在零假设下正确控制了第一类错误率。在对真实 GWAS 数据的应用中,MRCI 检测到常见疾病和潜在风险因素之间存在显著的双向和单向因果影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec2d/9975185/eac3b5fa556b/41467_2023_36490_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验