Institute of Medical Biometry and Statistics (IMBI), Faculty of Medicine and Medical Center, University of Freiburg, 79104, Freiburg, Germany.
Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, 79104, Freiburg, Germany.
Sci Rep. 2022 May 16;12(1):8061. doi: 10.1038/s41598-022-11650-6.
Deep learning approaches can uncover complex patterns in data. In particular, variational autoencoders achieve this by a non-linear mapping of data into a low-dimensional latent space. Motivated by an application to psychological resilience in the Mainz Resilience Project, which features intermittent longitudinal measurements of stressors and mental health, we propose an approach for individualized, dynamic modeling in this latent space. Specifically, we utilize ordinary differential equations (ODEs) and develop a novel technique for obtaining person-specific ODE parameters even in settings with a rather small number of individuals and observations, incomplete data, and a differing number of observations per individual. This technique allows us to subsequently investigate individual reactions to stimuli, such as the mental health impact of stressors. A potentially large number of baseline characteristics can then be linked to this individual response by regularized regression, e.g., for identifying resilience factors. Thus, our new method provides a way of connecting different kinds of complex longitudinal and baseline measures via individualized, dynamic models. The promising results obtained in the exemplary resilience application indicate that our proposal for dynamic deep learning might also be more generally useful for other application domains.
深度学习方法可以揭示数据中的复杂模式。特别是,变分自动编码器通过将数据非线性映射到低维潜在空间来实现这一点。受 Mainz 韧性项目中应用的启发,该项目具有应激和心理健康的间歇性纵向测量,我们提出了一种在该潜在空间中进行个体化、动态建模的方法。具体来说,我们利用常微分方程 (ODE) 并开发了一种新的技术,即使在个体数量和观测数量较少、数据不完整以及每个个体的观测数量不同的情况下,也可以获得特定于个体的 ODE 参数。该技术允许我们随后研究个体对刺激的反应,例如应激对心理健康的影响。然后可以通过正则化回归将大量潜在的基线特征与这种个体反应联系起来,例如,用于识别韧性因素。因此,我们的新方法提供了一种通过个体化、动态模型连接不同类型的复杂纵向和基线测量的方法。在有韧性的应用示例中获得的有希望的结果表明,我们对动态深度学习的建议对于其他应用领域也可能更有用。