Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Biomater Adv. 2022 Mar;134:112684. doi: 10.1016/j.msec.2022.112684. Epub 2022 Feb 7.
Recently, postoperative bone infections have been one of the most crucial challenges for surgeons. This study aims to synergistically promote antibacterial and osteoconductive properties of hydroxyapatite (HAp) nanoparticles through binary doping of Zn and Ga ions (Zn-Ga:HAp). Zn-Ga:HAp nanopowders with spherical morphology and homogeneous size are synthesized using a simple sol-gel method. Substitution of both zinc and gallium in the structure of HAp results in a gradual decrease in the lattice parameters as doping level increases, limits the growth of HAp particles and reduces its crystallinity. Noticeably, the crystallinity of HAp (85%) reduces to less than 73% (for X = 0.1), 78% (for X = 0.4) and 75% (for X = 0.1 and X = 0.4). Ion doping also significantly modulate the release of bioactive ions (Ca, PO, Zn, Ga) from the Zn-Ga:HAp depended on the overall amount of Ga and Zn in the HAp, which could mediate the biological responses. Incorporating both Zn and Ga ions in HAp structure could significantly improve the antibacterial activity of HAp nanopowders against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with a concentration-dependent effect. Noticeably, Zn-Ga:HAp (X = 0.1 and X = 0.4) powder shows the antibacterial activity of more than 68% and 84% against E. coli and S. aureus, respectively, at the concentration of 500 μg/ml, thereby showing excellent antibacterial properties. In addition, Zn-Ga:HAp nanopowders not only do not exhibit any cytotoxicity towards hMSCs, but also show significantly superior osteogenic properties. For instance, Zn-Ga:HAp (X = 0.1 and X = 0.4) nanopowders significantly enhance the alkaline phosphatase activity (approximately 2-fold) and mineralization (approximately 3-fold) of hMSCs after 14 days of culture, compared to pure HAp. Overall, Zn-Ga:HAp (X = 0.1 and X = 0.4) with desired osteogenesis and antibacterial activity compared to pure HAp, Zn:HAp and Ga:HAp shows promising opportunities for the implant-associated infections and the efficient healing of bone defects.
最近,术后骨感染一直是外科医生面临的最关键挑战之一。本研究旨在通过二元掺杂锌和镓离子(Zn-Ga:HAp)协同促进羟基磷灰石(HAp)纳米粒子的抗菌和骨诱导性能。采用简单的溶胶-凝胶法合成具有球形形貌和均匀尺寸的 Zn-Ga:HAp 纳米粉末。锌和镓在 HAp 结构中的替代导致晶格参数随着掺杂水平的增加逐渐减小,限制了 HAp 颗粒的生长并降低了其结晶度。值得注意的是,HAp 的结晶度(85%)降低至小于 73%(X=0.1)、78%(X=0.4)和 75%(X=0.1 和 X=0.4)。离子掺杂还显著调节 Zn-Ga:HAp 中生物活性离子(Ca、PO、Zn、Ga)的释放,这取决于 HAp 中 Ga 和 Zn 的总量,从而可以调节生物反应。将 Zn 和 Ga 离子掺入 HAp 结构中可以显著提高 HAp 纳米粉末对金黄色葡萄球菌(S. aureus)和大肠杆菌(E. coli)的抗菌活性,具有浓度依赖性效应。值得注意的是,Zn-Ga:HAp(X=0.1 和 X=0.4)粉末在 500μg/ml 浓度下对大肠杆菌和金黄色葡萄球菌的抗菌活性分别超过 68%和 84%,表现出优异的抗菌性能。此外,Zn-Ga:HAp 纳米粉末不仅对 hMSCs 没有任何细胞毒性,而且还表现出优异的成骨性能。例如,Zn-Ga:HAp(X=0.1 和 X=0.4)纳米粉末在培养 14 天后显著提高 hMSCs 的碱性磷酸酶活性(约 2 倍)和矿化(约 3 倍),与纯 HAp 相比。总体而言,与纯 HAp、Zn:HAp 和 Ga:HAp 相比,具有理想的成骨和抗菌活性的 Zn-Ga:HAp(X=0.1 和 X=0.4)在植入物相关感染和骨缺损的有效愈合方面具有广阔的应用前景。