Suppr超能文献

单因素模型的动态适配指数截断值。

Dynamic fit index cutoffs for one-factor models.

机构信息

Department of Psychology, Arizona State University, PO Box 871104, Tempe, AZ, 85287, USA.

University of California, Santa Barbara, USA.

出版信息

Behav Res Methods. 2023 Apr;55(3):1157-1174. doi: 10.3758/s13428-022-01847-y. Epub 2022 May 18.

Abstract

Assessing whether a multiple-item scale can be represented with a one-factor model is a frequent interest in behavioral research. Often, this is done in a factor analysis framework with approximate fit indices like RMSEA, CFI, or SRMR. These fit indices are continuous measures, so values indicating acceptable fit are up to interpretation. Cutoffs suggested by Hu and Bentler (1999) are a common guideline used in empirical research. However, these cutoffs were derived with intent to detect omitted cross-loadings or omitted factor covariances in multifactor models. These types of misspecifications cannot exist in one-factor models, so the appropriateness of using these guidelines in one-factor models is uncertain. This paper uses a simulation study to address whether traditional fit index cutoffs are sensitive to the types of misspecifications common in one-factor models. The results showed that traditional cutoffs have very poor sensitivity to misspecification in one-factor models and that the traditional cutoffs generalize poorly to one-factor contexts. As an alternative, we investigate the accuracy and stability of the recently introduced dynamic fit cutoff approach for creating fit index cutoffs for one-factor models. Simulation results indicated excellent performance of dynamic fit index cutoffs to classify correct or misspecified one-factor models and that dynamic fit index cutoffs are a promising approach for more accurate assessment of model fit in one-factor contexts.

摘要

评估多项目量表是否可以用单因素模型表示是行为研究中的一个常见关注点。通常,这是在因子分析框架中进行的,使用近似拟合指数,如 RMSEA、CFI 或 SRMR。这些拟合指数是连续的度量,因此表示可接受拟合的数值取决于解释。Hu 和 Bentler(1999)提出的临界值是实证研究中常用的指南。然而,这些临界值是为了检测多因素模型中的遗漏交叉负荷或遗漏因子协方差而有意派生的。这些类型的模型误设不能存在于单因素模型中,因此在单因素模型中使用这些准则的适当性是不确定的。本文使用模拟研究来确定传统拟合指数临界值是否对单因素模型中常见的误设类型敏感。结果表明,传统的临界值对单因素模型中的误设非常不敏感,并且传统的临界值在单因素情况下的泛化效果很差。作为替代方法,我们研究了最近引入的动态拟合临界值方法的准确性和稳定性,以创建单因素模型的拟合指数临界值。模拟结果表明,动态拟合指数临界值在分类正确或误设的单因素模型方面表现出色,并且动态拟合指数临界值是在单因素情况下更准确评估模型拟合的有前途的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验