Breeding Informatics Group, University of Göttingen, Margarethe von Wrangell-Weg 7, 37075, Göttingen, Germany.
KWS SAAT SE & Co. KGaA, 37574, Einbeck, Germany.
Virol J. 2022 May 18;19(1):85. doi: 10.1186/s12985-022-01804-3.
In research questions such as in resistance breeding against the Beet necrotic yellow vein virus it is of interest to compare the virus concentrations of samples from different groups. The enzyme-linked immunosorbent assay (ELISA) counts as the standard tool to measure virus concentrations. Simple methods for data analysis such as analysis of variance (ANOVA), however, are impaired due to non-normality of the resulting optical density (OD) values as well as unequal variances in different groups.
To understand the relationship between the OD values from an ELISA test and the virus concentration per sample, we used a large serial dilution and modelled its non-linear form using a five parameter logistic regression model. Furthermore, we examined if the quality of the model can be increased if one or several of the model parameters are defined beforehand. Subsequently, we used the inverse of the best model to estimate the virus concentration for every measured OD value.
We show that the transformed data are essentially normally distributed but provide unequal variances per group. Thus, we propose a generalised least squares model which allows for unequal variances of the groups to analyse the transformed data.
ANOVA requires normally distributed data as well as equal variances. Both requirements are not met with raw OD values from an ELISA test. A transformation with an inverse logistic function, however, gives the possibility to use linear models for data analysis of virus concentrations. We conclude that this method can be applied in every trial where virus concentrations of samples from different groups are to be compared via OD values from an ELISA test. To encourage researchers to use this method in their studies, we provide an R script for data transformation as well as the data from our trial.
在抗甜菜坏死黄脉病毒的抗性育种等研究问题中,比较来自不同组的样本的病毒浓度是很有意义的。酶联免疫吸附测定(ELISA)被认为是测量病毒浓度的标准工具。然而,由于所得光密度(OD)值的非正态性以及不同组之间方差不等,简单的数据分析方法,如方差分析(ANOVA),会受到影响。
为了了解 ELISA 试验的 OD 值与每个样本的病毒浓度之间的关系,我们使用了一个大的系列稀释,并使用五参数逻辑回归模型对其非线性形式进行建模。此外,我们还检查了如果事先定义一个或几个模型参数,是否可以提高模型的质量。随后,我们使用最佳模型的倒数来估计每个测量 OD 值的病毒浓度。
我们表明,转换后的数据本质上是正态分布的,但每个组的方差不等。因此,我们提出了一个广义最小二乘模型,允许组间的方差不等,以分析转换后的数据。
方差分析要求数据正态分布且方差相等。原始 ELISA 试验的 OD 值均不满足这两个要求。然而,使用逆逻辑函数进行转换,为使用线性模型分析病毒浓度提供了可能。我们的结论是,这种方法可以应用于每个需要通过 ELISA 试验的 OD 值比较来自不同组的样本的病毒浓度的试验中。为了鼓励研究人员在他们的研究中使用这种方法,我们提供了一个用于数据转换的 R 脚本以及我们的试验数据。