Suppr超能文献

神经网络去噪性能评估框架

Performance Assessment Framework for Neural Network Denoising.

作者信息

Li Junyuan, Wang Wenying, Tivnan Matthew, Stayman J Webster, Gang Grace J

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA 21205.

出版信息

Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12031. doi: 10.1117/12.2612732. Epub 2022 Apr 4.

Abstract

The proliferation of deep learning image processing calls for a quantitative image quality assessment framework that is suitable for nonlinear, data-dependent algorithms. In this work, we propose a method to systematically evaluate the system and noise responses such that the nonlinear transfer properties can be mapped out. The method involves sampling of lesion perturbations as a function of size, contrast, as well as clinically relevant features such as shape and texture that may be important for diagnosis. We embed the perturbations in backgrounds of varying attenuation levels, noise magnitude and correlation that are associated with different patient anatomies and imaging protocols. The range of system and noise response are further used to evaluate performance for clinical tasks such as signal detection and classification. We performed the assessment for an example CNN-denoising algorithm for low does lung CT screening. The system response of the CNN-denoising algorithm exhibits highly nonlinear behavior where both contrast and higher order lesion features such as spiculated boundaries are not reliably represented for lesions perturbations with small size and low contrast. The noise properties are potentially highly nonstationary, and should be assumed to be the same between the signal-present and signal-absent images. Furthermore, we observer a high degree dependency of both system and noise response on the background attenuation levels. Inputs around zeros are effectively imposed a non-negativity constraint; transfer properties for higher background levels are highly variable. For a detection task, CNN-denoised images improved detectability index by 16-18% compared to low dose CT inputs. For classification task between spiculated and smooth lesions, CNN-denoised images result in a much larger improvement up to 50%. The performance assessment framework propose in this work can systematically map out the nonlinear transfer functions for deep learning algorithms and can potentially enable robust deployment of such algorithms in medical imaging applications.

摘要

深度学习图像处理的激增需要一个适用于非线性、数据依赖算法的定量图像质量评估框架。在这项工作中,我们提出了一种系统评估系统和噪声响应的方法,以便能够描绘出非线性传递特性。该方法涉及对病变扰动进行采样,采样依据病变大小、对比度以及形状和纹理等临床相关特征(这些特征可能对诊断很重要)。我们将扰动嵌入到与不同患者解剖结构和成像协议相关的不同衰减水平、噪声幅度和相关性的背景中。系统和噪声响应范围进一步用于评估信号检测和分类等临床任务的性能。我们针对一种用于低剂量肺部CT筛查的示例CNN去噪算法进行了评估。CNN去噪算法的系统响应呈现出高度非线性行为,对于小尺寸和低对比度的病变扰动,对比度和诸如毛刺状边界等高阶病变特征都无法可靠地呈现出来。噪声特性可能高度非平稳,并且应假定在有信号和无信号的图像之间是相同的。此外,我们观察到系统和噪声响应都高度依赖于背景衰减水平。接近零的输入有效地施加了非负约束;较高背景水平的传递特性变化很大。对于检测任务,与低剂量CT输入相比,CNN去噪图像将可检测性指数提高了16 - 18%。对于毛刺状和平滑病变之间的分类任务,CNN去噪图像带来了高达50%的更大改进。这项工作中提出的性能评估框架可以系统地描绘深度学习算法的非线性传递函数,并有可能在医学成像应用中实现此类算法的稳健部署。

相似文献

1
Performance Assessment Framework for Neural Network Denoising.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12031. doi: 10.1117/12.2612732. Epub 2022 Apr 4.
4
Quantitative evaluation of deep convolutional neural network-based image denoising for low-dose computed tomography.
Vis Comput Ind Biomed Art. 2021 Jul 25;4(1):21. doi: 10.1186/s42492-021-00087-9.
5
Low-dose CT denoising via convolutional neural network with an observer loss function.
Med Phys. 2021 Oct;48(10):5727-5742. doi: 10.1002/mp.15161. Epub 2021 Aug 25.
6
A convolutional neural network for ultra-low-dose CT denoising and emphysema screening.
Med Phys. 2019 Sep;46(9):3941-3950. doi: 10.1002/mp.13666. Epub 2019 Jul 17.
7
Denoising of polychromatic CT images based on their own noise properties.
Med Phys. 2016 May;43(5):2251. doi: 10.1118/1.4945022.
8
Convolutional neural networks for improving image quality with noisy PET data.
EJNMMI Res. 2020 Sep 21;10(1):105. doi: 10.1186/s13550-020-00695-1.
9
Incorporation of residual attention modules into two neural networks for low-dose CT denoising.
Med Phys. 2021 Jun;48(6):2973-2990. doi: 10.1002/mp.14856. Epub 2021 Apr 23.
10
Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics.
Med Phys. 2019 Jan;46(1):190-198. doi: 10.1002/mp.13252. Epub 2018 Nov 19.

引用本文的文献

3
CT image denoising methods for image quality improvement and radiation dose reduction.
J Appl Clin Med Phys. 2024 Feb;25(2):e14270. doi: 10.1002/acm2.14270. Epub 2024 Jan 19.

本文引用的文献

1
Performance Analysis for Nonlinear Tomographic Data Processing.
Proc SPIE Int Soc Opt Eng. 2019 Jun;11072. doi: 10.1117/12.2534983. Epub 2019 May 28.
3
Generalized Prediction Framework for Reconstructed Image Properties using Neural Networks.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10948. doi: 10.1117/12.2513485. Epub 2019 Mar 1.
4
Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network.
IEEE Trans Med Imaging. 2017 Dec;36(12):2524-2535. doi: 10.1109/TMI.2017.2715284. Epub 2017 Jun 13.
5
A generic framework to simulate realistic lung, liver and renal pathologies in CT imaging.
Phys Med Biol. 2014 Nov 7;59(21):6637-57. doi: 10.1088/0031-9155/59/21/6637. Epub 2014 Oct 17.
7
Analysis of Resolution and Noise Properties of Nonquadratically Regularized Image Reconstruction Methods for PET.
IEEE Trans Med Imaging. 2008 Mar;27(3):413-24. doi: 10.1109/TMI.2007.911549.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验