Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
Department of Physics, McGill University, Montréal, Québec, Canada.
Science. 2022 May 20;376(6595):880-884. doi: 10.1126/science.abl5311. Epub 2022 May 19.
Systems immunology lacks a framework with which to derive theoretical understanding from high-dimensional datasets. We combined a robotic platform with machine learning to experimentally measure and theoretically model CD8 T cell activation. High-dimensional cytokine dynamics could be compressed onto a low-dimensional latent space in an antigen-specific manner (so-called "antigen encoding"). We used antigen encoding to model and reconstruct patterns of T cell immune activation. The model delineated six classes of antigens eliciting distinct T cell responses. We generalized antigen encoding to multiple immune settings, including drug perturbations and activation of chimeric antigen receptor T cells. Such universal antigen encoding for T cell activation may enable further modeling of immune responses and their rational manipulation to optimize immunotherapies.
系统免疫学缺乏一个从高维数据集推导出理论理解的框架。我们结合了机器人平台和机器学习,从实验上测量和理论上建模 CD8 T 细胞激活。高维细胞因子动力学可以以抗原特异性的方式压缩到低维潜在空间(所谓的“抗原编码”)。我们使用抗原编码来建模和重建 T 细胞免疫激活的模式。该模型描绘了六种引发不同 T 细胞反应的抗原类别。我们将抗原编码推广到多种免疫环境中,包括药物干扰和嵌合抗原受体 T 细胞的激活。这种通用的 T 细胞激活抗原编码可能使免疫反应的进一步建模及其合理操纵成为可能,从而优化免疫疗法。