Suppr超能文献

认知神经特征在预测心理健康行为中的效用。

Utility of Cognitive Neural Features for Predicting Mental Health Behaviors.

机构信息

Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, CA 92037, USA.

Department of Mental Health, VA San Diego Medical Center, San Diego, CA 92037, USA.

出版信息

Sensors (Basel). 2022 Apr 19;22(9):3116. doi: 10.3390/s22093116.

Abstract

Cognitive dysfunction underlies common mental health behavioral symptoms including depression, anxiety, inattention, and hyperactivity. In this study of 97 healthy adults, we aimed to classify healthy vs. mild-to-moderate self-reported symptoms of each disorder using cognitive neural markers measured with an electroencephalography (EEG). We analyzed source-reconstructed EEG data for event-related spectral perturbations in the theta, alpha, and beta frequency bands in five tasks, a selective attention and response inhibition task, a visuospatial working memory task, a Flanker interference processing task, and an emotion interference task. From the cortical source activation features, we derived augmented features involving co-activations between any two sources. Logistic regression on the augmented feature set, but not the original feature set, predicted the presence of psychiatric symptoms, particularly for anxiety and inattention with >80% sensitivity and specificity. We also computed current flow closeness and betweenness centralities to identify the “hub” source signal predictors. We found that the Flanker interference processing task was the most useful for assessing the connectivity hubs in general, followed by the inhibitory control go-nogo paradigm. Overall, these interpretable machine learning analyses suggest that EEG biomarkers collected on a rapid suite of cognitive assessments may have utility in classifying diverse self-reported mental health symptoms.

摘要

认知功能障碍是包括抑郁、焦虑、注意力不集中和多动在内的常见心理健康行为症状的基础。在这项对 97 名健康成年人的研究中,我们旨在使用脑电图 (EEG) 测量的认知神经标志物,对每种障碍的健康与轻度至中度自我报告症状进行分类。我们分析了五个任务(选择性注意和反应抑制任务、视觉空间工作记忆任务、Flanker 干扰处理任务和情绪干扰任务)中与事件相关的频谱扰动的源重建 EEG 数据。从皮质源激活特征中,我们推导出了增强特征,涉及任意两个源之间的共激活。增强特征集上的逻辑回归,但不是原始特征集,预测了精神症状的存在,特别是对焦虑和注意力不集中的症状,具有>80%的敏感性和特异性。我们还计算了电流流接近度和介数中心性,以识别“枢纽”源信号预测因子。我们发现,Flanker 干扰处理任务通常是评估连通性枢纽最有用的任务,其次是抑制控制 Go-Nogo 范式。总的来说,这些可解释的机器学习分析表明,在快速认知评估套件上收集的 EEG 生物标志物可能有助于对不同的自我报告心理健康症状进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d020/9100783/06d63265ddd4/sensors-22-03116-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验