Song Wenyu, Latham Nancy K, Liu Luwei, Rice Hannah E, Sainlaire Michael, Min Lillian, Zhang Linying, Thai Tien, Kang Min-Jeoung, Li Siyun, Tejeda Christian, Lipsitz Stuart, Samal Lipika, Carroll Diane L, Adkison Lesley, Herlihy Lisa, Ryan Virginia, Bates David W, Dykes Patricia C
Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
Harvard Medical School, Boston, Massachusetts, USA.
J Am Geriatr Soc. 2024 Apr;72(4):1145-1154. doi: 10.1111/jgs.18776. Epub 2024 Jan 13.
While many falls are preventable, they remain a leading cause of injury and death in older adults. Primary care clinics largely rely on screening questionnaires to identify people at risk of falls. Limitations of standard fall risk screening questionnaires include suboptimal accuracy, missing data, and non-standard formats, which hinder early identification of risk and prevention of fall injury. We used machine learning methods to develop and evaluate electronic health record (EHR)-based tools to identify older adults at risk of fall-related injuries in a primary care population and compared this approach to standard fall screening questionnaires.
Using patient-level clinical data from an integrated healthcare system consisting of 16-member institutions, we conducted a case-control study to develop and evaluate prediction models for fall-related injuries in older adults. Questionnaire-derived prediction with three questions from a commonly used fall risk screening tool was evaluated. We then developed four temporal machine learning models using routinely available longitudinal EHR data to predict the future risk of fall injury. We also developed a fall injury-prevention clinical decision support (CDS) implementation prototype to link preventative interventions to patient-specific fall injury risk factors.
Questionnaire-based risk screening achieved area under the receiver operating characteristic curve (AUC) up to 0.59 with 23% to 33% similarity for each pair of three fall injury screening questions. EHR-based machine learning risk screening showed significantly improved performance (best AUROC = 0.76), with similar prediction performance between 6-month and one-year prediction models.
The current method of questionnaire-based fall risk screening of older adults is suboptimal with redundant items, inadequate precision, and no linkage to prevention. A machine learning fall injury prediction method can accurately predict risk with superior sensitivity while freeing up clinical time for initiating personalized fall prevention interventions. The developed algorithm and data science pipeline can impact routine primary care fall prevention practice.
虽然许多跌倒事件是可以预防的,但跌倒仍是老年人受伤和死亡的主要原因。基层医疗诊所主要依靠筛查问卷来识别有跌倒风险的人群。标准跌倒风险筛查问卷存在局限性,包括准确性欠佳、数据缺失和格式不标准等问题,这阻碍了对风险的早期识别和跌倒伤害的预防。我们使用机器学习方法来开发和评估基于电子健康记录(EHR)的工具,以识别基层医疗人群中有跌倒相关伤害风险的老年人,并将这种方法与标准跌倒筛查问卷进行比较。
利用来自一个由16个成员机构组成的综合医疗系统的患者层面临床数据,我们进行了一项病例对照研究,以开发和评估老年人跌倒相关伤害的预测模型。对来自常用跌倒风险筛查工具的三个问题进行问卷衍生预测评估。然后,我们使用常规可用的纵向EHR数据开发了四个时间机器学习模型,以预测未来跌倒伤害的风险。我们还开发了一个跌倒伤害预防临床决策支持(CDS)实施原型,将预防干预措施与患者特定的跌倒伤害风险因素联系起来。
基于问卷的风险筛查在受试者操作特征曲线(AUC)下的面积达到0.59,三个跌倒伤害筛查问题每对之间的相似度为23%至33%。基于EHR的机器学习风险筛查显示性能有显著提高(最佳AUROC = 0.76),6个月和1年预测模型之间的预测性能相似。
目前对老年人进行基于问卷的跌倒风险筛查方法存在不足,存在项目冗余、精度不够以及与预防措施无关联等问题。机器学习跌倒伤害预测方法能够以更高的敏感性准确预测风险,同时腾出临床时间来启动个性化的跌倒预防干预措施。所开发的算法和数据科学流程可对常规基层医疗跌倒预防实践产生影响。