Cacovich Stefania, Vidon Guillaume, Degani Matteo, Legrand Marie, Gouda Laxman, Puel Jean-Baptiste, Vaynzof Yana, Guillemoles Jean-François, Ory Daniel, Grancini Giulia
CNRS, École Polytechnique, IPVF, UMR 9006, 18, Boulevard Thomas Gobert, 91120, Palaiseau, France.
Institut Photovoltaïque d'Ile-de-France (IPVF), 18 Boulevard Thomas Gobert, 91120, Palaiseau, France.
Nat Commun. 2022 May 23;13(1):2868. doi: 10.1038/s41467-022-30426-0.
Interface engineering through passivating agents, in the form of organic molecules, is a powerful strategy to enhance the performance of perovskite solar cells. Despite its pivotal function in the development of a rational device optimization, the actual role played by the incorporation of interfacial modifications and the interface physics therein remains poorly understood. Here, we investigate the interface and device physics, quantifying charge recombination and charge losses in state-of-the-art inverted solar cells with power conversion efficiency beyond 23% - among the highest reported so far - by using multidimensional photoluminescence imaging. By doing that we extract physical parameters such as quasi-Fermi level splitting (QFLS) and Urbach energy enabling us to assess that the main passivation mechanism affects the perovskite/PCBM ([6,6]-phenyl-C-butyric acid methyl ester) interface rather than surface defects. In this work, by linking optical, electrical measurements and modelling we highlight the benefits of organic passivation, made in this case by phenylethylammonium (PEAI) based cations, in maximising all the photovoltaic figures of merit.
通过有机分子形式的钝化剂进行界面工程,是提高钙钛矿太阳能电池性能的有力策略。尽管其在合理的器件优化发展中起着关键作用,但界面修饰的引入及其界面物理所起的实际作用仍知之甚少。在此,我们通过多维光致发光成像研究界面和器件物理,量化功率转换效率超过23%(这是目前报道的最高效率之一)的最先进倒置太阳能电池中的电荷复合和电荷损失。通过这样做,我们提取了诸如准费米能级分裂(QFLS)和乌尔巴赫能量等物理参数,使我们能够评估主要的钝化机制影响的是钙钛矿/PCBM([6,6]-苯基-C-丁酸甲酯)界面而非表面缺陷。在这项工作中,通过将光学、电学测量和建模联系起来,我们突出了在这种情况下由基于苯乙铵(PEAI)的阳离子进行的有机钝化在最大化所有光伏性能指标方面的益处。