National Medical Research Center for Neurosurgery named after N.N. Burdenko, Moscow, Russian Federation.
Stud Health Technol Inform. 2022 May 25;294:470-474. doi: 10.3233/SHTI220503.
Our study aimed to create a machine learning model to predict patients' functional outcomes after microsurgical treatment of unruptured intracranial aneurysms (UIA). Data on 615 microsurgically treated patients with UIA were collected retrospectively from the Electronic Health Records at N.N. Burdenko Neurosurgery Center (Moscow, Russia). The dichotomized modified Rankin Scale (mRS) at the discharge was used as a target variable. Several machine learning models were utilized: a random forest upon decision trees (RF), logistic regression (LR), support vector machine (SVM). The best result with F1-score metric = 0.904 was produced by the SVM model with a label-encode method. The predictive modeling based on machine learning might be promising as a decision support tool in intracranial aneurysm surgery.
我们的研究旨在创建一个机器学习模型,以预测未破裂颅内动脉瘤(UIA)显微手术治疗后的患者功能预后。从俄罗斯莫斯科 N.N. Burdenko 神经外科中心的电子健康记录中回顾性地收集了 615 例接受 UIA 显微手术治疗的患者数据。出院时的二分法改良 Rankin 量表(mRS)被用作目标变量。使用了几种机器学习模型:决策树之上的随机森林(RF)、逻辑回归(LR)、支持向量机(SVM)。采用标签编码方法的 SVM 模型产生了最佳的 F1 分数度量值=0.904。基于机器学习的预测建模可能是一种有前途的决策支持工具,可用于颅内动脉瘤手术。