Suppr超能文献

用于预测动脉瘤性蛛网膜下腔出血住院患者预后的机器学习建模

Machine learning modeling for outcome prediction of hospitalized patients with aneurysmal subarachnoid hemorrhage.

作者信息

Jabal Mohamed Sobhi, Wahood Waseem, Zreik Jad, Bilgin Cem, Ibrahim Mohamed K, Essibayi Muhammed Amir, Kobeissi Hassan, Rinaldo Lorenzo, Kallmes David F, Lanzino Giuseppe, Brinjikji Waleed

机构信息

Department of Radiology, Mayo Clinic, Rochester, MN, USA.

Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Interv Neuroradiol. 2025 Sep 15:15910199251375529. doi: 10.1177/15910199251375529.

Abstract

PurposeAneurysmal rupture and subarachnoid hemorrhage (SAH) have an exceptionally high mortality and morbidity burden. The aim of this study was to develop interpretable machine learning models for predicting short-term poor outcomes defined by the National Inpatient Sample Subarachnoid Hemorrhage Outcome Measure (NIS-SOM).MethodsThe National Inpatient Sample (NIS) database was queried from 2008 to 2018 to identify patients diagnosed with SAH who had undergone endovascular coiling or clipping for intracranial aneurysm. Demographic, comorbidity, risk factor, and hospital characteristic variables were recorded. Variables were preprocessed, and the feature space was reduced to include the most important features. To predict poor outcomes, machine learning models were trained and cross-validated before being evaluated on a separate testing set. Shapley Additive exPlanations of the best performing model was used for general and local model interpretation.ResultsAmong 18,149 admissions (mean age 55 ± 14 years, 68.8% women), 52.9% had a poor outcome. Test-set AUCs ranged 0.74-0.80; a multilayer perceptron performed best (AUC 0.80, precision 0.74, recall 0.82). SHAP ranked the ten most influential variables: age, neurological comorbidity, paralysis, Medicare insurance, smoking status, Elixhauser burden, fluid-electrolyte disorders, weight loss, arrhythmia, and heart failure.ConclusionsThe modeling predicted nationwide aSAH prognosis with decent accuracy and highlighted clinical, socioeconomic, and system-level drivers of determinants of poor short-term outcome. These results support the potential of explainable ML tools as complementary tools for early risk stratification, guiding resource allocation, and informing prospective multi-center validation and implementation studies.

摘要

目的

动脉瘤破裂和蛛网膜下腔出血(SAH)的死亡率和发病率负担极高。本研究的目的是开发可解释的机器学习模型,用于预测由国家住院样本蛛网膜下腔出血结局指标(NIS-SOM)定义的短期不良结局。

方法

查询2008年至2018年的国家住院样本(NIS)数据库,以识别诊断为SAH且已接受颅内动脉瘤血管内栓塞或夹闭治疗的患者。记录人口统计学、合并症、危险因素和医院特征变量。对变量进行预处理,并减少特征空间以纳入最重要的特征。为了预测不良结局,在单独的测试集上进行评估之前,先对机器学习模型进行训练和交叉验证。使用表现最佳模型的Shapley加法解释进行总体和局部模型解释。

结果

在18149例入院患者中(平均年龄55±14岁,68.8%为女性),52.9%有不良结局。测试集的AUC范围为0.74 - 0.80;多层感知器表现最佳(AUC 0.80,精确率0.74,召回率0.82)。SHAP对十个最具影响力的变量进行了排名:年龄、神经合并症、瘫痪、医疗保险、吸烟状况、埃利克斯豪泽负担、水电解质紊乱、体重减轻、心律失常和心力衰竭。

结论

该模型在全国范围内对动脉瘤性SAH预后的预测具有相当的准确性,并突出了短期不良结局决定因素的临床、社会经济和系统层面驱动因素。这些结果支持了可解释的机器学习工具作为早期风险分层、指导资源分配以及为前瞻性多中心验证和实施研究提供信息的补充工具的潜力。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验