Berthelet Jean, Foroutan Momeneh, Bhuva Dharmesh D, Whitfield Holly J, El-Saafin Farrah, Cursons Joseph, Serrano Antonin, Merdas Michal, Lim Elgene, Charafe-Jauffret Emmanuelle, Ginestier Christophe, Ernst Matthias, Hollande Frédéric, Anderson Robin L, Pal Bhupinder, Yeo Belinda, Davis Melissa J, Merino Delphine
Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia.
School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia.
Cancers (Basel). 2022 May 13;14(10):2404. doi: 10.3390/cancers14102404.
The development of therapies that target specific disease subtypes has dramatically improved outcomes for patients with breast cancer. However, survival gains have not been uniform across patients, even within a given molecular subtype. Large collections of publicly available drug screening data matched with transcriptomic measurements have facilitated the development of computational models that predict response to therapy. Here, we generated a series of predictive gene signatures to estimate the sensitivity of breast cancer samples to 90 drugs, comprising FDA-approved drugs or compounds in early development. To achieve this, we used a cell line-based drug screen with matched transcriptomic data to derive in silico models that we validated in large independent datasets obtained from cell lines and patient-derived xenograft (PDX) models. Robust computational signatures were obtained for 28 drugs and used to predict drug efficacy in a set of PDX models. We found that our signature for cisplatin can be used to identify tumors that are likely to respond to this drug, even in absence of the BRCA-1 mutation routinely used to select patients for platinum-based therapies. This clinically relevant observation was confirmed in multiple PDXs. Our study foreshadows an effective delivery approach for precision medicine.
针对特定疾病亚型的治疗方法的发展显著改善了乳腺癌患者的治疗效果。然而,即使在给定的分子亚型中,患者的生存获益也并不一致。大量公开可用的药物筛选数据与转录组测量结果相匹配,促进了预测治疗反应的计算模型的发展。在此,我们生成了一系列预测性基因特征,以评估乳腺癌样本对90种药物的敏感性,这些药物包括FDA批准的药物或处于早期研发阶段的化合物。为实现这一目标,我们使用了基于细胞系的药物筛选以及匹配的转录组数据,以推导计算机模型,并在从细胞系和患者来源的异种移植(PDX)模型获得的大型独立数据集中对其进行验证。我们获得了28种药物的稳健计算特征,并用于预测一组PDX模型中的药物疗效。我们发现,即使在没有通常用于选择铂类疗法患者的BRCA-1突变的情况下,我们的顺铂特征也可用于识别可能对该药物有反应的肿瘤。这一具有临床相关性的观察结果在多个PDX模型中得到了证实。我们的研究预示着一种精准医学的有效实施方法。