Suppr超能文献

抗癌药物的计算筛选确定了一种新的BRCA非依赖性基因表达特征,以预测乳腺癌对顺铂的敏感性。

Computational Screening of Anti-Cancer Drugs Identifies a New BRCA Independent Gene Expression Signature to Predict Breast Cancer Sensitivity to Cisplatin.

作者信息

Berthelet Jean, Foroutan Momeneh, Bhuva Dharmesh D, Whitfield Holly J, El-Saafin Farrah, Cursons Joseph, Serrano Antonin, Merdas Michal, Lim Elgene, Charafe-Jauffret Emmanuelle, Ginestier Christophe, Ernst Matthias, Hollande Frédéric, Anderson Robin L, Pal Bhupinder, Yeo Belinda, Davis Melissa J, Merino Delphine

机构信息

Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia.

School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia.

出版信息

Cancers (Basel). 2022 May 13;14(10):2404. doi: 10.3390/cancers14102404.

Abstract

The development of therapies that target specific disease subtypes has dramatically improved outcomes for patients with breast cancer. However, survival gains have not been uniform across patients, even within a given molecular subtype. Large collections of publicly available drug screening data matched with transcriptomic measurements have facilitated the development of computational models that predict response to therapy. Here, we generated a series of predictive gene signatures to estimate the sensitivity of breast cancer samples to 90 drugs, comprising FDA-approved drugs or compounds in early development. To achieve this, we used a cell line-based drug screen with matched transcriptomic data to derive in silico models that we validated in large independent datasets obtained from cell lines and patient-derived xenograft (PDX) models. Robust computational signatures were obtained for 28 drugs and used to predict drug efficacy in a set of PDX models. We found that our signature for cisplatin can be used to identify tumors that are likely to respond to this drug, even in absence of the BRCA-1 mutation routinely used to select patients for platinum-based therapies. This clinically relevant observation was confirmed in multiple PDXs. Our study foreshadows an effective delivery approach for precision medicine.

摘要

针对特定疾病亚型的治疗方法的发展显著改善了乳腺癌患者的治疗效果。然而,即使在给定的分子亚型中,患者的生存获益也并不一致。大量公开可用的药物筛选数据与转录组测量结果相匹配,促进了预测治疗反应的计算模型的发展。在此,我们生成了一系列预测性基因特征,以评估乳腺癌样本对90种药物的敏感性,这些药物包括FDA批准的药物或处于早期研发阶段的化合物。为实现这一目标,我们使用了基于细胞系的药物筛选以及匹配的转录组数据,以推导计算机模型,并在从细胞系和患者来源的异种移植(PDX)模型获得的大型独立数据集中对其进行验证。我们获得了28种药物的稳健计算特征,并用于预测一组PDX模型中的药物疗效。我们发现,即使在没有通常用于选择铂类疗法患者的BRCA-1突变的情况下,我们的顺铂特征也可用于识别可能对该药物有反应的肿瘤。这一具有临床相关性的观察结果在多个PDX模型中得到了证实。我们的研究预示着一种精准医学的有效实施方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb7c/9139442/a044114ddf80/cancers-14-02404-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验