Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 Box 2462, 3001 Leuven, Belgium.
Viruses. 2022 May 16;14(5):1057. doi: 10.3390/v14051057.
The bacterial biofilm constitutes a complex environment that endows the bacterial community within with an ability to cope with biotic and abiotic stresses. Considering the interaction with bacterial viruses, these biofilms contain intrinsic defense mechanisms that protect against phage predation; these mechanisms are driven by physical, structural, and metabolic properties or governed by environment-induced mutations and bacterial diversity. In this regard, horizontal gene transfer can also be a driver of biofilm diversity and some (pro)phages can function as temporary allies in biofilm development. Conversely, as bacterial predators, phages have developed counter mechanisms to overcome the biofilm barrier. We highlight how these natural systems have previously inspired new antibiofilm design strategies, e.g., by utilizing exopolysaccharide degrading enzymes and peptidoglycan hydrolases. Next, we propose new potential approaches including phage-encoded DNases to target extracellular DNA, as well as phage-mediated inhibitors of cellular communication; these examples illustrate the relevance and importance of research aiming to elucidate novel antibiofilm mechanisms contained within the vast set of unknown ORFs from phages.
细菌生物膜构成了一个复杂的环境,使其中的细菌群落具备了应对生物和非生物胁迫的能力。考虑到与细菌病毒的相互作用,这些生物膜包含内在的防御机制,以防止噬菌体的捕食;这些机制是由物理、结构和代谢特性驱动的,或者受环境诱导的突变和细菌多样性的控制。在这方面,水平基因转移也可以成为生物膜多样性的驱动因素,一些(原)噬菌体可以在生物膜发育中充当临时盟友。相反,作为细菌捕食者,噬菌体已经发展出了克服生物膜障碍的反制机制。我们强调了这些自然系统如何以前启发了新的抗生物膜设计策略,例如利用胞外多糖降解酶和肽聚糖水解酶。接下来,我们提出了新的潜在方法,包括噬菌体编码的 DNA 酶来靶向细胞外 DNA,以及噬菌体介导的细胞通讯抑制剂;这些例子说明了研究旨在阐明噬菌体中大量未知 ORF 所包含的新型抗生物膜机制的相关性和重要性。