Salvador Raymond, Fuentes-Claramonte Paola, García-León María Ángeles, Ramiro Núria, Soler-Vidal Joan, Torres María Llanos, Salgado-Pineda Pilar, Munuera Josep, Voineskos Aristotle, Pomarol-Clotet Edith
FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.
Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain.
Front Hum Neurosci. 2022 May 11;16:878028. doi: 10.3389/fnhum.2022.878028. eCollection 2022.
Regularization may be used as an alternative to dimensionality reduction when the number of variables in a model is much larger than the number of available observations. In a recent study from our group regularized regression was employed to quantify brain functional connectivity in a sample of healthy controls using a brain parcellation and resting state fMRI images. Here regularization is applied to evaluate resting state connectivity abnormalities at the voxel level in a sample of patients with schizophrenia. Specifically, ridge regression is implemented with different degrees of regularization. Results are compared to those delivered by the weighted global brain connectivity method (GBC), which is based on averaged bivariate correlations and from the non-redundant connectivity method (NRC), a dimensionality reduction approach that applies supervised principal component regressions. Ridge regression is able to detect a larger set of abnormally connected regions than both GBC and NRC methods, including schizophrenia related connectivity reductions in fronto-medial, somatosensory and occipital structures. Due to its multivariate nature, the proposed method is much more sensitive to group abnormalities than the GBC, but it also outperforms the NRC, which is multivariate too. Voxel based regularized regression is a simple and sensitive alternative for quantifying brain functional connectivity.
当模型中的变量数量远大于可用观测值数量时,正则化可作为降维的替代方法。在我们团队最近的一项研究中,使用正则化回归,通过脑图谱和静息态功能磁共振成像(fMRI)图像,对健康对照样本中的脑功能连接进行量化。在此,正则化用于评估精神分裂症患者样本中体素水平的静息态连接异常。具体而言,实施具有不同正则化程度的岭回归。将结果与基于平均双变量相关性的加权全脑连接方法(GBC)以及非冗余连接方法(NRC,一种应用监督主成分回归的降维方法)所得结果进行比较。与GBC和NRC方法相比,岭回归能够检测到更多异常连接区域,包括额内侧、体感和枕叶结构中与精神分裂症相关的连接减少。由于其多变量性质,所提出的方法对组间异常比GBC更为敏感,但它也优于同样是多变量的NRC。基于体素的正则化回归是量化脑功能连接的一种简单且敏感的替代方法。