German Aerospace Center (DLR), Institute of Technical Physics, Hardthausen, Germany.
Trenzyme GmbH, Konstanz, Germany.
J Biomed Opt. 2022 May;27(5). doi: 10.1117/1.JBO.27.5.050501.
Fast and reliable detection of infectious SARS-CoV-2 virus loads is an important issue. Fluorescence spectroscopy is a sensitive tool to do so in clean environments. This presumes a comprehensive knowledge of fluorescence data.
We aim at providing fully featured information on wavelength and time-dependent data of the fluorescence of the SARS-CoV-2 spike protein S1 subunit, its receptor-binding domain (RBD), and the human angiotensin-converting enzyme 2, especially with respect to possible optical detection schemes.
Spectrally resolved excitation-emission maps of the involved proteins and measurements of fluorescence lifetimes were recorded for excitations from 220 to 295 nm. The fluorescence decay times were extracted by using a biexponential kinetic approach. The binding process in the SARS-CoV-2 RBD was likewise examined for spectroscopic changes.
Distinct spectral features for each protein are pointed out in relevant spectra extracted from the excitation-emission maps. We also identify minor spectroscopic changes under the binding process. The decay times in the biexponential model are found to be ( 2.0 ± 0.1 ) ns and ( 8.6 ± 1.4 ) ns.
Specific material data serve as an important background information for the design of optical detection and testing methods for SARS-CoV-2 loaded media.
快速可靠地检测传染性 SARS-CoV-2 病毒载量是一个重要问题。荧光光谱是在清洁环境中进行检测的敏感工具。这需要全面了解荧光数据。
我们旨在提供有关 SARS-CoV-2 刺突蛋白 S1 亚基、其受体结合域(RBD)和人血管紧张素转换酶 2 的荧光的波长和时间相关数据的全面信息,特别是关于可能的光学检测方案。
记录了相关蛋白质的光谱分辨激发-发射图谱和从 220 到 295nm 的激发的荧光寿命测量。通过双指数动力学方法提取荧光衰减时间。同样检查了 SARS-CoV-2 RBD 中的结合过程中的光谱变化。
从激发-发射图谱中提取的相关光谱中指出了每种蛋白质的独特光谱特征。我们还发现结合过程中存在较小的光谱变化。双指数模型中的衰减时间为 (2.0 ± 0.1) ns 和 (8.6 ± 1.4) ns。
特定的材料数据是设计用于检测 SARS-CoV-2 负载介质的光学检测和测试方法的重要背景信息。