Suppr超能文献

硫化氢信号的代谢范式:电子传递链可塑性。

A Metabolic Paradigm for Hydrogen Sulfide Signaling Electron Transport Chain Plasticity.

机构信息

Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA.

出版信息

Antioxid Redox Signal. 2023 Jan;38(1-3):57-67. doi: 10.1089/ars.2022.0067. Epub 2022 Aug 10.

Abstract

A burgeoning literature has attributed varied physiological effects to hydrogen sulfide (HS), which is a product of eukaryotic sulfur amino acid metabolism. Protein persulfidation represents a major focus of studies elucidating the mechanism underlying HS signaling. On the contrary, the capacity of HS to induce reductive stress by targeting the electron transport chain (ETC) and signal by reprogramming redox metabolism has only recently begun to be elucidated. In contrast to the nonspecific reaction of HS with oxidized cysteines to form protein persulfides, its inhibition of complex IV represents a specific mechanism of action. Studies on the dual impact of HS as an ETC substrate and an inhibitor have led to the exciting discovery of ETC plasticity and the use of fumarate as a terminal electron acceptor. HS oxidation combined with complex IV targeting generates mitochondrial reductive stress, which is signaled through the metabolic network, leading to increased aerobic glycolysis, glutamine-dependent reductive carboxylation, and lipogenesis. Insights into HS-induced metabolic reprogramming are ushering in a paradigm shift for understanding the mechanism of its cellular action. It will be critical to reevaluate the physiological effects of HS, for example, cytoprotection against ischemia-reperfusion injury, through the framework of metabolic reprogramming and ETC remodeling by HS. The metabolic ramifications of HS in other cellular compartments, for example, the endoplasmic reticulum and the nucleus, as well as the intersections between hypoxia and HS signaling are important future directions that merit elucidation. 38, 57-67.

摘要

不断发展的文献将多种生理效应归因于硫化氢(HS),它是真核生物硫氨基酸代谢的产物。蛋白质过硫化代表了阐明 HS 信号机制的研究的主要焦点。相反,HS 通过靶向电子传递链(ETC)和通过重新编程氧化还原代谢来诱导还原性应激的能力最近才开始被阐明。与 HS 与氧化半胱氨酸非特异性反应形成蛋白质过硫化相反,其对复合物 IV 的抑制作用代表了一种特定的作用机制。对 HS 作为 ETC 底物和抑制剂的双重影响的研究导致了 ETC 可塑性和富马酸盐作为末端电子受体的令人兴奋的发现。HS 氧化与复合物 IV 靶向相结合会产生线粒体还原性应激,通过代谢网络进行信号传递,导致有氧糖酵解、谷氨酰胺依赖性还原性羧化和脂肪生成增加。对 HS 诱导的代谢重编程的深入了解正在为理解其细胞作用机制带来范式转变。通过 HS 引起的代谢重编程和 ETC 重塑的框架来重新评估 HS 的生理效应(例如,对缺血再灌注损伤的细胞保护作用)将是至关重要的。HS 在其他细胞区室(例如内质网和核)中的代谢后果,以及缺氧和 HS 信号之间的交叉,是值得阐明的重要未来方向。38,57-67。

相似文献

4
Hydrogen Sulfide Signaling in Plants.硫化氢在植物中的信号转导
Antioxid Redox Signal. 2023 Jul;39(1-3):40-58. doi: 10.1089/ars.2023.0267. Epub 2023 Apr 18.
5
Regulation of the redox metabolome and thiol proteome by hydrogen sulfide.硫化氢对氧化还原代谢组和巯基蛋白质组的调节。
Crit Rev Biochem Mol Biol. 2021 Jun;56(3):221-235. doi: 10.1080/10409238.2021.1893641. Epub 2021 Mar 15.
8
HS preconditioning induces long-lived perturbations in O metabolism.HS 预处理诱导 O 代谢的持久扰动。
Proc Natl Acad Sci U S A. 2024 Mar 19;121(12):e2319473121. doi: 10.1073/pnas.2319473121. Epub 2024 Mar 13.
10
Complexities of complex II: Sulfide metabolism in vivo.复杂 II 的复杂性:体内的硫化物代谢。
J Biol Chem. 2022 Mar;298(3):101661. doi: 10.1016/j.jbc.2022.101661. Epub 2022 Jan 29.

引用本文的文献

1
Gut sulfide metabolism modulates behavior and brain bioenergetics.肠道硫化物代谢调节行为和大脑生物能量学。
Proc Natl Acad Sci U S A. 2025 Jun 24;122(25):e2503677122. doi: 10.1073/pnas.2503677122. Epub 2025 Jun 17.
7
Sulfide oxidation promotes hypoxic angiogenesis and neovascularization.硫化物氧化促进缺氧血管生成和新血管生成。
Nat Chem Biol. 2024 Oct;20(10):1294-1304. doi: 10.1038/s41589-024-01583-8. Epub 2024 Mar 20.
8
HS preconditioning induces long-lived perturbations in O metabolism.HS 预处理诱导 O 代谢的持久扰动。
Proc Natl Acad Sci U S A. 2024 Mar 19;121(12):e2319473121. doi: 10.1073/pnas.2319473121. Epub 2024 Mar 13.

本文引用的文献

8
10
Regulation of the redox metabolome and thiol proteome by hydrogen sulfide.硫化氢对氧化还原代谢组和巯基蛋白质组的调节。
Crit Rev Biochem Mol Biol. 2021 Jun;56(3):221-235. doi: 10.1080/10409238.2021.1893641. Epub 2021 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验