Suppr超能文献

线粒体 NADH 池参与硫化氢信号转导和有氧糖酵解的刺激。

The mitochondrial NADH pool is involved in hydrogen sulfide signaling and stimulation of aerobic glycolysis.

机构信息

Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.

Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

J Biol Chem. 2021 Jan-Jun;296:100736. doi: 10.1016/j.jbc.2021.100736. Epub 2021 Apr 30.

Abstract

Hydrogen sulfide is synthesized by enzymes involved in sulfur metabolism and oxidized via a dedicated mitochondrial pathway that intersects with the electron transport chain at the level of complex III. Studies with HS are challenging since it is volatile and also reacts with oxidized thiols in the culture medium, forming sulfane sulfur species. The half-life of exogenously added HS to cultured cells is unknown. In this study, we first examined the half-life of exogenously added HS to human colonic epithelial cells. In plate cultures, HS disappeared with a t/ of 3 to 4 min at 37 °C with a small fraction being trapped as sulfane sulfur species. In suspension cultures, the rate of abiotic loss of HS was slower, and we demonstrated that sulfide stimulated aerobic glycolysis, which was sensitive to the mitochondrial but not the cytoplasmic NADH pool. Oxidation of mitochondrial NADH using the genetically encoded mito-LbNOX tool blunted the cellular sensitivity to sulfide-stimulated aerobic glycolysis and enhanced its oxidation to thiosulfate. In contrast, sulfide did not affect flux through the oxidative pentose phosphate pathway or the TCA cycle. Knockdown of sulfide quinone oxidoreductase, which commits HS to oxidation, sensitized cells to sulfide-stimulated aerobic glycolysis. Finally, we observed that sulfide decreased ATP levels in cells. The dual potential of HS to activate oxidative phosphorylation at low concentrations, but inhibit it at high concentrations, suggests that it might play a role in tuning electron flux and, therefore, cellular energy metabolism, particularly during cell proliferation.

摘要

硫化氢是由参与硫代谢的酶合成的,并通过一条专门的线粒体途径被氧化,该途径在复合物 III 水平与电子传递链相交。由于硫化氢是挥发性的,并且会与培养基中的氧化硫醇反应,形成硫烷硫物种,因此用 HS 进行研究具有挑战性。外源性 HS 添加到培养细胞中的半衰期是未知的。在这项研究中,我们首先检查了外源性 HS 添加到人类结肠上皮细胞中的半衰期。在平板培养物中,HS 在 37°C 下以 3 到 4 分钟的半衰期消失,一小部分被捕获为硫烷硫物种。在悬浮培养物中,HS 的非生物损失率较慢,并且我们证明了硫化物刺激需氧糖酵解,这对线粒体而不是细胞质 NADH 池敏感。使用基因编码的 mito-LbNOX 工具氧化线粒体 NADH 会使细胞对硫化物刺激的需氧糖酵解的敏感性降低,并增强其向硫代硫酸盐的氧化。相比之下,硫化物不会影响通过氧化戊糖磷酸途径或 TCA 循环的通量。硫化氢醌氧化还原酶的敲低会使 HS 氧化,从而使细胞对硫化物刺激的需氧糖酵解敏感。最后,我们观察到硫化物降低了细胞中的 ATP 水平。HS 在低浓度下激活氧化磷酸化,而在高浓度下抑制氧化磷酸化的双重潜力表明,它可能在调节电子通量方面发挥作用,从而调节细胞能量代谢,特别是在细胞增殖期间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5a5/8165552/6f4fa96d3d1f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验