Departament d'Enginyeria Química, IMEM-BRT, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I, Second Floor, 08019, Barcelona, Spain.
Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Basement S-1, 08019, Barcelona, Spain.
ACS Biomater Sci Eng. 2022 Aug 8;8(8):3329-3340. doi: 10.1021/acsbiomaterials.2c00334. Epub 2022 Jun 2.
Polypropylene (PP) surgical meshes, with different knitted architectures, were chemically functionalized with gold nanoparticles (AuNPs) and 4-mercaptothiazole (4-MB) to transform their fibers into a surface enhanced Raman scattering (SERS) detectable plastic material. The application of a thin layer of poly[-isopropylacrylamide---methylene bis(acrylamide)] (PNIPAAm--MBA) graft copolymer, covalently polymerized to the mesh-gold substrate, caused the conversion of the inert plastic into a thermoresponsive material, resulting in the first PP implantable mesh with both SERS and temperature stimulus responses. AuNPs were homogeneously distributed over the PP yarns, offering a clear SERS recognition together with higher PNIPAAm lower critical solution temperature (LCST ∼ 37 °C) than without the metallic particles (LCST ∼ 32 °C). An infrared thermographic camera was used to observe the polymer-hydrogel folding-unfolding process and to identify the new value of the LCST, connected with the heat generation by plasmonic-resonance gold NPs. The development of SERS PP prosthesis will be relevant for the bioimaging and biomarker detection of the implant by using the plasmonic effect and Raman vibrational spectroscopy for minimally invasive interventions (such as laparoscopy), to prevent patient inflammatory processes. Furthermore, Raman sources have been proved to not damage the cells, like happens with near-infrared irradiation, representing another advantage of moving to SERS approaches. The findings reported here offer unprecedented application possibilities in the biomedical field by extrapolating the material functionalization to other nonabsorbable polymer made devices (e.g., surgical sutures, grapes, wound dressings, among others).
不同编织结构的聚丙烯(PP)手术网用金纳米粒子(AuNPs)和 4-巯基噻唑(4-MB)化学功能化,将其纤维转化为表面增强拉曼散射(SERS)可检测的塑料材料。将聚[异丙基丙烯酰胺---亚甲基双(丙烯酰胺)](PNIPAAm--MBA)接枝共聚物的薄层共价聚合到网金基底上,使惰性塑料转化为热响应材料,从而制造出第一个具有 SERS 和温度刺激响应的可植入 PP 网。AuNPs 均匀分布在 PP 纱线上,提供清晰的 SERS 识别,同时具有比没有金属颗粒时更高的 PNIPAAm 低临界溶液温度(LCST∼37°C)(LCST∼32°C)。使用红外热成像摄像机观察聚合物-水凝胶的折叠-展开过程,并识别与等离子体共振金 NPs 产生的热量相关的新 LCST 值。SERS PP 假体的发展将与通过等离子体效应和拉曼振动光谱进行的生物成像和生物标志物检测相关,用于微创干预(如腹腔镜检查),以防止患者的炎症过程。此外,已经证明拉曼源不会像近红外辐射那样损坏细胞,这是转向 SERS 方法的另一个优势。这里报道的发现通过将材料功能化扩展到其他不可吸收聚合物制成的设备(例如手术缝线、葡萄、伤口敷料等),为生物医学领域提供了前所未有的应用可能性。