Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan.
Cancer Sci. 2022 Aug;113(8):2716-2726. doi: 10.1111/cas.15451. Epub 2022 Jun 27.
Lysosomes function as the digestive system of a cell and are involved in macromolecular recycling, vesicle trafficking, metabolic reprogramming, and progrowth signaling. Although quality control of lysosome biogenesis is thought to be a potential target for cancer therapy, practical strategies have not been established. Here, we show that lysosomal membrane integrity supported by lysophagy, a selective autophagy for damaged lysosomes, is a promising therapeutic target for glioblastoma (GBM). In this study, we found that ifenprodil, an FDA-approved drug with neuromodulatory activities, efficiently inhibited spheroid formation of patient-derived GBM cells in a combination with autophagy inhibition. Ifenprodil increased intracellular Ca level, resulting in mitochondrial reactive oxygen species-mediated cytotoxicity. The ifenprodil-induced Ca elevation was due to Ca release from lysosomes, but not endoplasmic reticulum, associated with galectin-3 punctation as an indicator of lysosomal membrane damage. As the Ca release was enhanced by ATG5 deficiency, autophagy protected against lysosomal membrane damage. By comparative analysis of 765 FDA-approved compounds, we identified another clinically available drug for central nervous system (CNS) diseases, amoxapine, in addition to ifenprodil. Both compounds promoted degradation of lysosomal membrane proteins, indicating a critical role of lysophagy in quality control of lysosomal membrane integrity. Importantly, a synergistic inhibitory effect of ifenprodil and chloroquine, a clinically available autophagy inhibitor, on spheroid formation was remarkable in GBM cells, but not in nontransformed neural progenitor cells. Finally, chloroquine dramatically enhanced effects of the compounds inducing lysosomal membrane damage in a patient-derived xenograft model. These data demonstrate a therapeutic advantage of targeting lysosomal membrane integrity in GBM.
溶酶体充当细胞的消化系统,参与大分子的回收、囊泡运输、代谢重编程和促生长信号转导。尽管溶酶体生物发生的质量控制被认为是癌症治疗的潜在靶点,但尚未建立实用的策略。在这里,我们表明,溶酶体吞噬作用支持的溶酶体膜完整性是胶质母细胞瘤(GBM)的有前途的治疗靶点。在这项研究中,我们发现,ifenprodil,一种具有神经调节活性的 FDA 批准的药物,与自噬抑制联合使用时,可有效抑制患者来源的 GBM 细胞球体的形成。ifenprodil 增加细胞内 Ca 水平,导致线粒体活性氧介导的细胞毒性。ifenprodil 诱导的 Ca 升高是由于溶酶体而不是内质网释放 Ca 引起的,这与半乳糖凝集素-3 点状作为溶酶体膜损伤的指标有关。由于 ATG5 缺陷增强了 Ca 释放,自噬可防止溶酶体膜损伤。通过对 765 种 FDA 批准的化合物进行比较分析,我们除了 ifenprodil 之外,还确定了另一种用于中枢神经系统(CNS)疾病的临床可用药物阿莫沙平。这两种化合物均促进溶酶体膜蛋白的降解,表明溶酶体吞噬作用在溶酶体膜完整性的质量控制中起关键作用。重要的是,ifenprodil 和氯喹(一种临床可用的自噬抑制剂)在 GBM 细胞中的协同抑制球体形成作用非常显著,但在非转化神经祖细胞中则不然。最后,氯喹在患者来源的异种移植模型中显著增强了诱导溶酶体膜损伤的化合物的作用。这些数据表明靶向 GBM 中溶酶体膜完整性具有治疗优势。