Lad Eleonora, Sleiman Karim, Banks David L, Hariharan Sanjay, Clemons Traci, Herrmann Rolf, Dauletbekov Daniyar, Giani Andrea, Chong Victor, Chew Emily Y, Toth Cynthia A
Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA.
The Statistical Consulting Center, Maa Data Group, Beirut, Lebanon.
Ophthalmol Sci. 2022 Jun;2(2). doi: 10.1016/j.xops.2022.100160.
To describe optical coherence tomography (SD-OCT) features, age, gender, and systemic variables that may be used in machine/deep learning studies to identify high-risk patient subpopulations with high risk of progression to geographic atrophy (GA) and visual acuity (VA) loss in the short term.
prospective, longitudinal study.
We analyzed imaging data from patients with iAMD (N= 316) enrolled in Age-Related Eye Disease Study 2 (AREDS2) Ancillary SD-OCT with adequate SD-OCT imaging for repeated measures.
Qualitative and quantitative multimodal variables from the database were derived at each yearly visit over 5 years. Based on statistical analyses developed in the field of cardiology, an algorithm was developed and used to select person-years without GA on colour fundus photography or SD-OCT at baseline. The analysis employed machine learning approaches to generate classification trees. Eyes were stratified as low, average, above average and high risk in 1 or 2 years, based on OCT and demographic features by the risk of GA development or decreased VA by 5+ and 10+ letters.
new onset of SD-OCT-determined GA and VA loss.
We identified multiple retinal and subretinal SD-OCT and demographic features from the baseline visit, each of which independently conveyed low to high risk of new-onset GA or VA loss on each of the follow-up visits at 1 or 2 years.
We propose a risk-stratified classification of iAMD based on the combination of OCT-derived retinal features, age, gender and systemic variables for progression to OCT-determined GA and/or VA loss. After external validation, the composite early endpoints may be used as exclusion or inclusion criteria for future clinical studies of iAMD focused on prevention of GA progression or VA loss.
描述光学相干断层扫描(SD - OCT)特征、年龄、性别和全身变量,这些可用于机器学习/深度学习研究,以识别短期内有进展为地图样萎缩(GA)和视力(VA)丧失高风险的高风险患者亚群。
前瞻性纵向研究。
我们分析了年龄相关性眼病研究2(AREDS2)辅助SD - OCT中纳入的316例湿性年龄相关性黄斑变性(iAMD)患者的成像数据,这些患者有足够的SD - OCT成像用于重复测量。
在5年的每年随访中,从数据库中获取定性和定量的多模态变量。基于心脏病学领域开展的统计分析,开发了一种算法,并用于在基线时选择彩色眼底照片或SD - OCT上无GA的人年数。该分析采用机器学习方法生成分类树。根据OCT和人口统计学特征,基于GA发生风险或视力下降5个及以上和10个及以上字母,将眼睛在1年或2年内分为低、中、高和极高风险。
SD - OCT确定的GA新发和视力丧失。
我们从基线访视中识别出多个视网膜和视网膜下SD - OCT及人口统计学特征,在1年或2年的每次随访中,每个特征都独立地传达了新发GA或视力丧失的低到高风险。
我们基于OCT衍生的视网膜特征、年龄、性别和全身变量的组合,提出了iAMD的风险分层分类,用于进展为OCT确定的GA和/或视力丧失。经过外部验证后,这些综合早期终点可作为未来聚焦于预防GA进展或视力丧失的iAMD临床研究的排除或纳入标准。