Tang Biwei, Peng Yaling, Luo Jing, Zhou Yaqian, Pang Muye, Xiang Kui
Intelligent System Research Institute, School of Automation, Wuhan University of Technology, Wuhan, China.
Front Bioeng Biotechnol. 2022 May 20;10:883633. doi: 10.3389/fbioe.2022.883633. eCollection 2022.
Investigating the optimal control strategy involved in human lifting motion can provide meritorious insights on designing and controlling wearable robotic devices to release human low-back pain and fatigue. However, determining the latent cost function regarding this motion remains challenging due to the complexities of the human central nervous system. Recently, it has been discovered that the underlying cost function of a biological motion can be identified from an inverse optimization control (IOC) issue, which can be handled the bilevel optimization technology. Inspired by this discovery, this work is dedicated to studying the underlying cost function of human lifting tasks through the bilevel optimization technology. To this end, a nested bilevel optimization approach is developed by integrating particle swarm optimization (PSO) with the direction collocation (DC) method. The upper level optimizer leverages particle swarm optimization to optimize weighting parameters among different predefined performance criteria in the cost function while minimizing the kinematic error between the experimental data and the result predicted by the lower level optimizer. The lower level optimizer implements the direction collocation method to predict human kinematic and dynamic information based on the human musculoskeletal model inserted into OpenSim. Following after a benchmark study, the developed method is evaluated by experimental tests on different subjects. The experimental results reveal that the proposed method is effective at finding the cost function of human lifting tasks. Thus, the proposed method could be regarded as a paramount alternative in the predictive simulation of human lifting motion.
研究人体提举运动中涉及的最优控制策略,可为设计和控制可穿戴机器人设备以缓解人体下背部疼痛和疲劳提供有益的见解。然而,由于人类中枢神经系统的复杂性,确定关于该运动的潜在成本函数仍然具有挑战性。最近,人们发现生物运动的潜在成本函数可以从逆优化控制(IOC)问题中识别出来,该问题可以通过双层优化技术来处理。受这一发现的启发,这项工作致力于通过双层优化技术研究人体提举任务的潜在成本函数。为此,通过将粒子群优化(PSO)与方向配置(DC)方法相结合,开发了一种嵌套双层优化方法。上层优化器利用粒子群优化来优化成本函数中不同预定义性能标准之间的加权参数,同时最小化实验数据与下层优化器预测结果之间的运动学误差。下层优化器基于插入到OpenSim中的人体肌肉骨骼模型,采用方向配置方法来预测人体运动学和动力学信息。在进行基准研究之后,通过对不同受试者的实验测试对所开发的方法进行评估。实验结果表明,所提出的方法能够有效地找到人体提举任务的成本函数。因此,所提出的方法可被视为人体提举运动预测模拟中的一种至关重要的替代方法。