IEEE Trans Neural Syst Rehabil Eng. 2019 Jul;27(7):1426-1435. doi: 10.1109/TNSRE.2019.2922942. Epub 2019 Jun 13.
Predictive simulation based on dynamic optimization using musculoskeletal models is a powerful approach for studying human gait. Predictive musculoskeletal simulation may be used for a variety of applications from designing assistive devices to testing theories of motor control. However, the underlying cost function for the predictive optimization is unknown and is generally assumed a priori. Alternatively, the underlying cost function can be determined from among a family of possible cost functions, representing an inverse optimal control problem that may be solved using a bilevel optimization approach. In this study, a nested evolutionary approach is proposed to solve the bilevel optimization problem. The lower level optimization is solved by a direct collocation method, and the upper level is solved by a genetic algorithm. We demonstrate our approach to solve different bilevel optimization problems, including finding the weights among three common performance criteria in the cost function for normal human walking. The proposed approach was found to be effective at solving the bilevel optimization problems. This approach should provide practical utility in designing assistive devices to aid mobility, and could yield insights about the control of human walking.
基于肌肉骨骼模型的动态优化的预测模拟是研究人类步态的一种强大方法。预测性肌肉骨骼模拟可用于各种应用,从设计辅助设备到测试运动控制理论。然而,预测优化的基础成本函数是未知的,通常是先验假设的。或者,可以从可能的成本函数族中确定基础成本函数,这代表一个逆最优控制问题,可以使用双层优化方法来解决。在这项研究中,提出了一种嵌套进化方法来解决双层优化问题。通过直接配置方法解决下层优化问题,通过遗传算法解决上层优化问题。我们展示了我们的方法来解决不同的双层优化问题,包括在正常人类行走的成本函数中找到三个常见性能标准之间的权重。发现所提出的方法在解决双层优化问题方面非常有效。这种方法应该在设计辅助移动的辅助设备方面具有实际效用,并可以深入了解人类行走的控制。