Lukashchuk Anton, Riemensberger Johann, Karpov Maxim, Liu Junqiu, Kippenberg Tobias J
Laboratory of Photonics and Quantum Measurements (LPQM), Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
Nat Commun. 2022 Jun 7;13(1):3280. doi: 10.1038/s41467-022-30542-x.
Laser-based ranging (LiDAR) - already ubiquitously used in industrial monitoring, atmospheric dynamics, or geodesy - is a key sensor technology. Coherent laser ranging, in contrast to time-of-flight approaches, is immune to ambient light, operates continuous-wave allowing higher average powers, and yields simultaneous velocity and distance information. State-of-the-art coherent single laser-detector architectures reach hundreds of kilopixel per second sampling rates, while emerging applications - autonomous driving, robotics, and augmented reality - mandate megapixel per second point sampling to support real-time video-rate imaging. Yet, such rates of coherent LiDAR have not been demonstrated. Recent advances in photonic chip-based microcombs provide a route to higher acquisition speeds via parallelization but require separation of individual channels at the detector side, increasing photonic integration complexity. Here we overcome the challenge and report a hardware-efficient swept dual-soliton microcomb technique that achieves coherent ranging and velocimetry at megapixel per second line scan measurement rates with up to 64 optical channels. Multiheterodyning two synchronously frequency-modulated microcombs yields distance and velocity information of all individual ranging channels on a single receiver alleviating the need for individual separation, detection, and digitization. The reported LiDAR implementation is compatible with photonic integration and demonstrates the significant advantages of acquisition speed afforded by the convergence of optical telecommunication and metrology technologies.
基于激光的测距(LiDAR)——已广泛应用于工业监测、大气动力学或大地测量——是一种关键的传感器技术。与飞行时间方法相比,相干激光测距不受环境光影响,以连续波方式运行,允许更高的平均功率,并能同时提供速度和距离信息。最先进的相干单激光探测器架构每秒采样率可达数百千像素,而新兴应用——自动驾驶、机器人技术和增强现实——要求每秒兆像素的点采样以支持实时视频速率成像。然而,这种相干LiDAR的速率尚未得到验证。基于光子芯片的微梳的最新进展提供了一条通过并行化实现更高采集速度的途径,但需要在探测器端分离各个通道,这增加了光子集成的复杂性。在此,我们克服了这一挑战,并报告了一种硬件高效的扫频双孤子微梳技术,该技术在高达64个光通道的情况下,以每秒兆像素的线扫描测量速率实现相干测距和测速。对两个同步调频微梳进行多重外差可在单个接收器上产生所有单个测距通道的距离和速度信息,从而无需单独的分离、检测和数字化。所报道实现的LiDAR与光子集成兼容,并展示了光通信和计量技术融合所带来的采集速度方面的显著优势。