Suppr超能文献

肺部的通胀不稳定性:大变形下具有波浪形纤维的厚壁肺泡的分析模型。

Inflation instability in the lung: an analytical model of a thick-walled alveolus with wavy fibres under large deformations.

机构信息

Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA.

Philips Research, Cambridge, MA, USA.

出版信息

J R Soc Interface. 2021 Oct;18(183):20210594. doi: 10.1098/rsif.2021.0594. Epub 2021 Oct 13.

Abstract

Inflation of hollow elastic structures can become unstable and exhibit a runaway phenomenon if the tension in their walls does not rise rapidly enough with increasing volume. Biological systems avoid such inflation instability for reasons that remain poorly understood. This is best exemplified by the lung, which inflates over its functional volume range without instability. The goal of this study was to determine how the constituents of lung parenchyma determine tissue stresses that protect alveoli from instability-related overdistension during inflation. We present an analytical model of a thick-walled alveolus composed of wavy elastic fibres, and investigate its pressure-volume behaviour under large deformations. Using second-harmonic generation imaging, we found that collagen waviness follows a beta distribution. Using this distribution to fit human pressure-volume curves, we estimated collagen and elastin effective stiffnesses to be 1247 kPa and 18.3 kPa, respectively. Furthermore, we demonstrate that linearly elastic but wavy collagen fibres are sufficient to achieve inflation stability within the physiological pressure range if the alveolar thickness-to-radius ratio is greater than 0.05. Our model thus identifies the constraints on alveolar geometry and collagen waviness required for inflation stability and provides a multiscale link between alveolar pressure and stresses on fibres in healthy and diseased lungs.

摘要

如果空心弹性结构的壁张力不能随着体积的增加而迅速增加,那么其膨胀就会变得不稳定,并表现出失控现象。由于原因尚不清楚,生物系统可以避免这种膨胀不稳定性。这在肺部表现得最为明显,肺部在其功能体积范围内充气而不会出现不稳定。本研究的目的是确定肺实质的组成部分如何确定组织应力,以在充气过程中防止肺泡因与不稳定相关的过度膨胀而发生过度膨胀。我们提出了一种由波浪形弹性纤维组成的厚壁肺泡的分析模型,并研究了其在大变形下的压力-体积行为。通过二次谐波产生成像,我们发现胶原蛋白的波纹遵循β分布。使用该分布拟合人体压力-体积曲线,我们估计胶原蛋白和弹性蛋白的有效刚度分别为 1247kPa 和 18.3kPa。此外,我们证明如果肺泡厚度与半径之比大于 0.05,那么即使是线性弹性但具有波纹的胶原蛋白纤维也足以在生理压力范围内实现充气稳定性。因此,我们的模型确定了充气稳定性所需的肺泡几何形状和胶原蛋白波纹的限制,并为健康和患病肺部的肺泡压力与纤维上的应力之间提供了一种多尺度联系。

相似文献

4
Alveolar septal structure in different species.不同物种的肺泡间隔结构。
J Appl Physiol (1985). 1994 Sep;77(3):1060-6. doi: 10.1152/jappl.1994.77.3.1060.
7
The effect of tissue elastic properties and surfactant on alveolar stability.组织弹性特性和表面活性剂对肺泡稳定性的影响。
J Appl Physiol (1985). 2010 Nov;109(5):1369-77. doi: 10.1152/japplphysiol.00844.2009. Epub 2010 Aug 19.

引用本文的文献

6
Computational lung modelling in respiratory medicine.计算呼吸医学中的肺部建模。
J R Soc Interface. 2022 Jun;19(191):20220062. doi: 10.1098/rsif.2022.0062. Epub 2022 Jun 8.

本文引用的文献

1
A viscoelastic two-dimensional network model of the lung extracellular matrix.肺细胞外基质的黏弹性二维网络模型。
Biomech Model Mechanobiol. 2020 Dec;19(6):2241-2253. doi: 10.1007/s10237-020-01336-1. Epub 2020 May 14.
5
Alveolar Micromechanics in Bleomycin-induced Lung Injury.博来霉素诱导性肺损伤中的肺泡微力学。
Am J Respir Cell Mol Biol. 2018 Dec;59(6):757-769. doi: 10.1165/rcmb.2018-0044OC.
7
Measurement of Elastic Modulus of Collagen Type I Single Fiber.I型胶原蛋白单纤维弹性模量的测量
PLoS One. 2016 Jan 22;11(1):e0145711. doi: 10.1371/journal.pone.0145711. eCollection 2016.
8
Stress controls the mechanics of collagen networks.应力控制着胶原蛋白网络的力学特性。
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9573-8. doi: 10.1073/pnas.1504258112. Epub 2015 Jul 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验