Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes (NHRI), Miaoli County 35053, Taiwan.
Langmuir. 2022 Jun 21;38(24):7383-7399. doi: 10.1021/acs.langmuir.2c00448. Epub 2022 Jun 8.
Conducting polymers (CPs) have gained attention as electrode materials in bioengineering mainly because of their mechanical softness compared to conventional inorganic materials. To achieve better performance and broaden bioelectronics applications, the surface modification of soft zwitterionic polymers with antifouling properties represents a facile approach to preventing unwanted nonspecific protein adsorption and improving biocompatibility. This feature article emphasizes the antifouling properties of zwitterionic CPs, accompanied by their molecular synthesis and surface modification methods and an analysis of the interfacial phenomenon. Herein, commonly used methods for zwitterionic functionalization on CPs are introduced, including the synthesis of zwitterionic moieties on CP molecules and postsurface modification, such as the grafting of zwitterionic polymer brushes. To analyze the chain conformation, the structure of bound water in the vicinity of zwitterionic CPs and biomolecule behavior, such as protein adsorption or cell adhesion, provide critical insights into the antifouling properties. Integrating these characterization techniques offers general guidelines and paves the way for designing new zwitterionic CPs for advanced biomedical applications. Recent advances in newly designed zwitterionic CP-based electrodes have demonstrated outstanding potential in modern biomedical applications.
导电聚合物 (CPs) 因其机械柔韧性而在生物工程中作为电极材料引起了关注,与传统的无机材料相比,CPs 具有机械柔韧性。为了实现更好的性能和拓宽生物电子学的应用,用具有抗污性能的软两性离子聚合物对柔软的聚合物进行表面修饰是一种防止非特异性蛋白质不受欢迎吸附和提高生物相容性的简便方法。本文重点介绍了两性离子 CP 的抗污特性,以及它们的分子合成和表面修饰方法以及界面现象的分析。文中介绍了 CP 上两性离子功能化的常用方法,包括 CP 分子上两性离子部分的合成和表面后修饰,例如两性离子聚合物刷的接枝。为了分析链构象、两性离子 CP 附近结合水的结构以及生物分子行为(如蛋白质吸附或细胞黏附),提供了对抗污特性的关键见解。整合这些表征技术为设计用于先进生物医学应用的新型两性离子 CP 提供了通用指南和方法。最近在新设计的基于两性离子 CP 的电极方面的进展表明,它们在现代生物医学应用中具有巨大的潜力。