Suppr超能文献

COVID-19 的时空传播:非均匀 SEPIR 模型与南卡罗来纳州数据的比较。

Spatio-temporal spread of COVID-19: Comparison of the inhomogeneous SEPIR model and data from South Carolina.

机构信息

Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.

The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

出版信息

PLoS One. 2022 Jun 9;17(6):e0268995. doi: 10.1371/journal.pone.0268995. eCollection 2022.

Abstract

During the COVID-19 pandemic authorities have been striving to obtain reliable predictions for the spreading dynamics of the disease. We recently developed a multi-"sub-populations" (multi-compartments: susceptible, exposed, pre-symptomatic, infectious, recovered) model, that accounts for the spatial in-homogeneous spreading of the infection and shown, for a variety of examples, how the epidemic curves are highly sensitive to location of epicenters, non-uniform population density, and local restrictions. In the present work we test our model against real-life data from South Carolina during the period May 22 to July 22 (2020). During this period, minimal restrictions have been employed, which allowed us to assume that the local basic reproduction number is constant in time. We account for the non-uniform population density in South Carolina using data from NASA's Socioeconomic Data and Applications Center (SEDAC), and predict the evolution of infection heat-maps during the studied period. Comparing the predicted heat-maps with those observed, we find high qualitative resemblance. Moreover, the Pearson's correlation coefficient is relatively high thus validating our model against real-world data. We conclude that the model accounts for the major effects controlling spatial in-homogeneous spreading of the disease. Inclusion of additional sub-populations (compartments), in the spirit of several recently developed models for COVID-19, can be easily performed within our mathematical framework.

摘要

在 COVID-19 大流行期间,当局一直在努力获得可靠的疾病传播动态预测。我们最近开发了一个多“亚群”(多隔间:易感、暴露、无症状、感染、康复)模型,该模型考虑了感染的空间不均匀传播,并展示了各种示例,说明流行病曲线对震中位置、非均匀人口密度和局部限制高度敏感。在目前的工作中,我们根据 2020 年 5 月 22 日至 7 月 22 日期间南卡罗来纳州的实际数据来测试我们的模型。在此期间,采用了最小的限制措施,这使我们可以假设当地的基本繁殖数在时间上是常数。我们使用美国宇航局社会经济数据和应用中心 (SEDAC) 的数据来考虑南卡罗来纳州的非均匀人口密度,并预测研究期间感染热图的演变。将预测的热图与观察到的热图进行比较,我们发现高度的定性相似性。此外,皮尔逊相关系数相对较高,从而验证了我们的模型与实际数据的一致性。我们得出结论,该模型考虑了控制疾病空间不均匀传播的主要影响。根据最近为 COVID-19 开发的几个模型的精神,我们可以很容易地在我们的数学框架内纳入更多的亚群(隔间)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f125/9182687/6718c6d8b79f/pone.0268995.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验