Division of Psychiatry, UCL, London, UK.
Camden and Islington NHS Foundation Trust, London, UK.
BMC Med. 2021 Apr 28;19(1):99. doi: 10.1186/s12916-021-01964-z.
Lithium is the most effective treatment in bipolar disorder. Its use is limited by concerns about risk of chronic kidney disease (CKD). We aimed to develop a model to predict risk of CKD following lithium treatment initiation, by identifying individuals with a high-risk trajectory of kidney function.
We used United Kingdom Clinical Practice Research Datalink (CPRD) electronic health records (EHRs) from 2000 to 2018. CPRD Aurum for prediction model development and CPRD Gold for external validation. We used elastic net regularised regression to generate a prediction model from potential features. We performed discrimination and calibration assessments in an external validation data set. We included all patients aged ≥ 16 with bipolar disorder prescribed lithium. To be included patients had to have ≥ 1 year of follow-up before lithium initiation, ≥ 3 estimated glomerular filtration rate (eGFR) measures after lithium initiation (to be able to determine a trajectory) and a normal (≥ 60 mL/min/1.73 m) eGFR at lithium initiation (baseline). In the Aurum development cohort, 1609 fulfilled these criteria. The Gold external validation cohort included 934 patients. We included 44 potential baseline features in the prediction model, including sociodemographic, mental and physical health and drug treatment characteristics. We compared a full model with the 3-variable 5-year kidney failure risk equation (KFRE) and a 3-variable elastic net model. We used group-based trajectory modelling to identify latent trajectory groups for eGFR. We were interested in the group with deteriorating kidney function (the high-risk group).
The high risk of deteriorating eGFR group included 191 (11.87%) of the Aurum cohort and 137 (14.67%) of the Gold cohort. Of these, 168 (87.96%) and 117 (85.40%) respectively developed CKD 3a or more severe during follow-up. The model, developed in Aurum, had a ROC area of 0.879 (95%CI 0.853-0.904) in the Gold external validation data set. At the empirical optimal cut-point defined in the development dataset, the model had a sensitivity of 0.91 (95%CI 0.84-0.97) and a specificity of 0.74 (95% CI 0.67-0.82). However, a 3-variable elastic net model (including only age, sex and baseline eGFR) performed similarly well (ROC area 0.888; 95%CI 0.864-0.912), as did the KFRE (ROC area 0.870; 95%CI 0.841-0.898).
Individuals at high risk of a poor eGFR trajectory can be identified before initiation of lithium treatment by a simple equation including age, sex and baseline eGFR. Risk was increased in individuals who were younger at commencement of lithium, female and had a lower baseline eGFR. We did not identify strong predicters of eGFR decline specific to lithium-treated patients. Notably, lithium duration and toxicity were not associated with high-risk trajectory.
锂是治疗双相情感障碍最有效的药物。但其使用受到慢性肾脏病(CKD)风险的限制。我们旨在通过确定肾功能呈高危轨迹的个体,来开发一种预测锂治疗后发生 CKD 的模型。
我们使用了来自 2000 年至 2018 年的英国临床实践研究数据链接(CPRD)电子健康记录(EHR)。Aurum 用于预测模型开发,Gold 用于外部验证。我们使用弹性网正则化回归从潜在特征中生成预测模型。我们在外部验证数据集中进行了区分和校准评估。我们纳入了所有年龄≥16 岁、被诊断为双相情感障碍并服用锂的患者。为了纳入患者,在锂治疗开始前必须有≥1 年的随访时间,锂治疗开始后至少有≥3 次估计肾小球滤过率(eGFR)测量值(以便确定轨迹),并且在锂治疗开始时(基线)有正常(≥60mL/min/1.73m)eGFR。在 Aurum 开发队列中,有 1609 名患者符合这些标准。Gold 外部验证队列包括 934 名患者。我们在预测模型中纳入了 44 个潜在的基线特征,包括社会人口统计学、心理健康和身体健康以及药物治疗特征。我们比较了完整模型与 3 变量 5 年肾功能衰竭风险方程(KFRE)和 3 变量弹性网模型。我们使用基于群组的轨迹建模来识别 eGFR 的潜在轨迹组。我们对肾功能恶化(高危组)的高风险组感兴趣。
Aurum 队列中 191 名(11.87%)和 Gold 队列中 137 名(14.67%)患者的 eGFR 高危风险组。其中,分别有 168 名(87.96%)和 117 名(85.40%)患者在随访期间发展为 CKD3a 或更严重的疾病。在 Gold 外部验证数据集中,在 Aurum 中开发的模型的 ROC 面积为 0.879(95%CI 0.853-0.904)。在开发数据集定义的经验最优切点处,该模型的敏感性为 0.91(95%CI 0.84-0.97),特异性为 0.74(95%CI 0.67-0.82)。然而,一个包括年龄、性别和基线 eGFR 的 3 变量弹性网模型表现同样良好(ROC 面积 0.888;95%CI 0.864-0.912),KFRE 也是如此(ROC 面积 0.870;95%CI 0.841-0.898)。
通过包括年龄、性别和基线 eGFR 的简单方程,可以在锂治疗开始前识别出肾功能轨迹高危的个体。在开始锂治疗时年龄较小、女性和基线 eGFR 较低的个体风险增加。我们没有发现针对锂治疗患者的肾功能下降的特定的强预测因子。值得注意的是,锂的使用时间和毒性与高危轨迹无关。