Suppr超能文献

基于心脏模拟和机器学习的药物致尖端扭转型室性心动过速易感性的性别特异性分类。

Sex-Specific Classification of Drug-Induced Torsade de Pointes Susceptibility Using Cardiac Simulations and Machine Learning.

机构信息

Department of Pharmacology, University of California, Davis, California, USA.

Department of Neuroscience, Psychology, Drug Sciences and Child Health (NeuroFarBa), University of Florence, Florence, Italy.

出版信息

Clin Pharmacol Ther. 2021 Aug;110(2):380-391. doi: 10.1002/cpt.2240. Epub 2021 Apr 19.

Abstract

Torsade de Pointes (TdP), a rare but lethal ventricular arrhythmia, is a toxic side effect of many drugs. To assess TdP risk, safety regulatory guidelines require quantification of hERG channel block in vitro and QT interval prolongation in vivo for all new therapeutic compounds. Unfortunately, these have proven to be poor predictors of torsadogenic risk, and are likely to have prevented safe compounds from reaching clinical phases. Although this has stimulated numerous efforts to define new paradigms for cardiac safety, none of the recently developed strategies accounts for patient conditions. In particular, despite being a well-established independent risk factor for TdP, female sex is vastly under-represented in both basic research and clinical studies, and thus current TdP metrics are likely biased toward the male sex. Here, we apply statistical learning to synthetic data, generated by simulating drug effects on cardiac myocyte models capturing male and female electrophysiology, to develop new sex-specific classification frameworks for TdP risk. We show that (i) TdP classifiers require different features in females vs. males; (ii) male-based classifiers perform more poorly when applied to female data; and (iii) female-based classifier performance is largely unaffected by acute effects of hormones (i.e., during various phases of the menstrual cycle). Notably, when predicting TdP risk of intermediate drugs on female simulated data, male-biased predictive models consistently underestimate TdP risk in women. Therefore, we conclude that pipelines for preclinical cardiotoxicity risk assessment should consider sex as a key variable to avoid potentially life-threatening consequences for the female population.

摘要

尖端扭转型室性心动过速(TdP)是一种罕见但致命的室性心律失常,是许多药物的毒性副作用。为了评估 TdP 风险,安全性监管指南要求对所有新的治疗化合物进行体外 hERG 通道阻断和体内 QT 间期延长的定量评估。不幸的是,这些已被证明是致扭转型风险的不良预测指标,并且可能阻止了安全的化合物进入临床阶段。尽管这激发了许多定义新的心脏安全性范式的努力,但最近开发的策略都没有考虑到患者的情况。特别是,尽管女性是 TdP 的一个既定独立危险因素,但在基础研究和临床研究中,女性的代表性严重不足,因此目前的 TdP 指标可能偏向男性。在这里,我们应用统计学习方法对合成数据进行分析,这些数据是通过模拟药物对捕获男性和女性电生理的心肌细胞模型的影响而生成的,以开发新的针对 TdP 风险的性别特异性分类框架。我们表明:(i)在女性和男性中,TdP 分类器需要不同的特征;(ii)当应用于女性数据时,基于男性的分类器的性能较差;(iii)女性分类器的性能在很大程度上不受激素的急性影响(即,在月经周期的各个阶段)。值得注意的是,当预测女性模拟数据中中等药物的 TdP 风险时,基于男性的预测模型一致低估了女性的 TdP 风险。因此,我们得出的结论是,用于临床前心脏毒性风险评估的管道应将性别视为关键变量,以避免女性人群面临潜在的危及生命的后果。

相似文献

4
Nonclinical proarrhythmia models: predicting Torsades de Pointes.非临床致心律失常模型:预测尖端扭转型室速
J Pharmacol Toxicol Methods. 2005 Jul-Aug;52(1):46-59. doi: 10.1016/j.vascn.2005.04.011.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验