Tony and Leona Campane Center for Excellence in Image-Guided Surgery and Advanced Imaging Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio.
Tony and Leona Campane Center for Excellence in Image-Guided Surgery and Advanced Imaging Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio.
Ophthalmol Retina. 2022 Dec;6(12):1241-1252. doi: 10.1016/j.oret.2022.05.031. Epub 2022 Jun 9.
Despite guidelines for hydroxychloroquine (HCQ) toxicity screening, there are clear challenges to accurate detection and interpretation. In the current report, the feasibility of automated machine learning (ML)-based detection of HCQ retinopathy and prediction of progression to toxicity in eyes without preexisting toxicity has been described.
Retrospective, longitudinal cohort study.
Subjects on HCQ therapy.
This was an institutional review board-approved, retrospective, longitudinal image analysis of 388 subjects on HCQ. Multilayer, compartmental, retinal segmentation with ellipsoid zone (EZ) mapping was used to harvest quantitative spectral-domain (SD)-OCT biomarkers. Using a combination of clinical features (i.e., cumulative HCQ dose and the duration of therapy) and quantitative imaging biomarkers (e.g., volumetric EZ integrity and compartmental measurements), ML models were created to detect toxicity and predict progression based on ground-truth OCT-based toxicity readings by 2 masked retina specialists. Furthermore, 10-fold cross-validation was performed.
The model performance was visualized using receiver operator curves and calculating the area under the curve (AUC). The corresponding sensitivity and specificity values were evaluated for the feasibility of HCQ toxicity screening and prediction.
The prevalence of HCQ toxicity in this cohort of 388 patients was 9.8% (n = 38). Twenty-one eyes progressed to toxicity during follow-up. OCT-based features (i.e., partial EZ attenuation, EZ volume, outer nuclear layer volume, and compartmental thicknesses) and clinical features (i.e., HCQ daily dose, HCQ cumulative dose, and duration of therapy) showed significant differences between the toxic and nontoxic groups. Percentage area with partial EZ attenuation (i.e., percentage of the macula with an EZ-retinal pigment epithelium thickness of ≤ 20 μm) was the most discriminating single feature (toxic, 35.7 ± 46.5%; nontoxic, 1.8 ± 4.4%; P < 0.0001). Using a random forest model, high-performance, automated toxicity detection was achieved, with a mean AUC of 0.97, sensitivity of 95%, and specificity of 91%. Furthermore, the toxicity progression prediction model had a mean AUC of 0.89, with a sensitivity and specificity of 90% and 80%, respectively.
This report described the feasibility of high-performance automated classification models that used a combination of clinical and quantitative SD-OCT biomarkers to detect HCQ retinal toxicity and predict progression to toxicity in cases without toxicity. Future work is needed to validate these findings in an independent dataset.
尽管有羟氯喹(HCQ)毒性筛查指南,但准确检测和解释仍存在明显挑战。在本报告中,描述了基于自动化机器学习(ML)的 HCQ 视网膜病变检测和预测无预先毒性的眼睛毒性进展的可行性。
回顾性纵向队列研究。
接受 HCQ 治疗的受试者。
这是一项机构审查委员会批准的回顾性纵向图像分析,对 388 名接受 HCQ 治疗的受试者进行了分析。使用多层、隔室、视网膜分段与椭圆体区(EZ)映射来采集定量频域(SD)-OCT 生物标志物。使用临床特征(即累积 HCQ 剂量和治疗持续时间)和定量成像生物标志物(例如,EZ 完整性和隔室测量的体积)的组合,创建 ML 模型以基于由 2 名盲法视网膜专家进行的基于 OCT 的毒性读数来检测毒性并预测进展。此外,还进行了 10 倍交叉验证。
使用接收者操作曲线和计算曲线下面积(AUC)来可视化模型性能。评估了相应的敏感性和特异性值,以评估 HCQ 毒性筛查和预测的可行性。
在该 388 例患者队列中,HCQ 毒性的患病率为 9.8%(n=38)。在随访期间,有 21 只眼睛进展为毒性。基于 OCT 的特征(即部分 EZ 衰减、EZ 体积、外核层体积和隔室厚度)和临床特征(即 HCQ 日剂量、HCQ 累积剂量和治疗持续时间)在毒性组和非毒性组之间存在显著差异。部分 EZ 衰减的面积百分比(即 EZ-视网膜色素上皮厚度≤20μm 的黄斑面积百分比)是最具区分力的单一特征(毒性组为 35.7%±46.5%;非毒性组为 1.8%±4.4%;P<0.0001)。使用随机森林模型,实现了高性能、自动化的毒性检测,平均 AUC 为 0.97,灵敏度为 95%,特异性为 91%。此外,毒性进展预测模型的平均 AUC 为 0.89,灵敏度和特异性分别为 90%和 80%。
本报告描述了使用临床和定量 SD-OCT 生物标志物组合来检测 HCQ 视网膜毒性并预测无毒性病例毒性进展的高性能自动化分类模型的可行性。需要在独立数据集上进一步验证这些发现。