Suppr超能文献

监测在线 COVID-19 错误信息的哨点节点方法。

Sentinel node approach to monitoring online COVID-19 misinformation.

机构信息

The Ohio State University, Columbus, OH, USA.

Glenn College of Public Affairs, The Ohio State University, Columbus, OH, USA.

出版信息

Sci Rep. 2022 Jun 14;12(1):9832. doi: 10.1038/s41598-022-12450-8.

Abstract

Understanding how different online communities engage with COVID-19 misinformation is critical for public health response. For example, misinformation confined to a small, isolated community of users poses a different public health risk than misinformation being consumed by a large population spanning many diverse communities. Here we take a longitudinal approach that leverages tools from network science to study COVID-19 misinformation on Twitter. Our approach provides a means to examine the breadth of misinformation engagement using modest data needs and computational resources. We identify a subset of accounts from different Twitter communities discussing COVID-19, and follow these 'sentinel nodes' longitudinally from July 2020 to January 2021. We characterize sentinel nodes in terms of a linked domain preference score, and use a standardized similarity score to examine alignment of tweets within and between communities. We find that media preference is strongly correlated with the amount of misinformation propagated by sentinel nodes. Engagement with sensationalist misinformation topics is largely confined to a cluster of sentinel nodes that includes influential conspiracy theorist accounts. By contrast, misinformation relating to COVID-19 severity generated widespread engagement across multiple communities. Our findings indicate that misinformation downplaying COVID-19 severity is of particular concern for public health response. We conclude that the sentinel node approach can be an effective way to assess breadth and depth of online misinformation penetration.

摘要

了解不同的在线社区如何处理 COVID-19 错误信息对于公共卫生应对至关重要。例如,局限于一小部分用户的错误信息构成的公共卫生风险与被大量来自不同社区的人群消费的错误信息不同。在这里,我们采用了一种纵向方法,利用网络科学的工具来研究 Twitter 上的 COVID-19 错误信息。我们的方法提供了一种使用适度的数据需求和计算资源来检查错误信息参与度广度的手段。我们从不同的 Twitter 社区中确定了一组讨论 COVID-19 的账户,并从 2020 年 7 月到 2021 年 1 月对这些“哨兵节点”进行了纵向跟踪。我们根据关联域偏好分数来描述哨兵节点,并使用标准化的相似性分数来检查社区内部和社区之间的推文对齐程度。我们发现,媒体偏好与哨兵节点传播的错误信息数量密切相关。耸人听闻的错误信息主题的参与主要局限于一个包括有影响力的阴谋论者账户的哨兵节点集群。相比之下,与 COVID-19 严重程度相关的错误信息在多个社区中产生了广泛的参与。我们的研究结果表明,淡化 COVID-19 严重程度的错误信息特别值得公共卫生应对部门关注。我们的结论是,哨兵节点方法可以有效地评估在线错误信息渗透的广度和深度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验