Suppr超能文献

一种用于模拟埃博拉病毒在西非传播的非参数霍克斯模型。

A non-parametric Hawkes model of the spread of Ebola in west Africa.

作者信息

Park Junhyung, Chaffee Adam W, Harrigan Ryan J, Schoenberg Frederic Paik

机构信息

Department of Statistics, University of California, Los Angeles, Los Angeles, CA, USA.

Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, USA.

出版信息

J Appl Stat. 2020 Sep 26;49(3):621-637. doi: 10.1080/02664763.2020.1825646. eCollection 2022.

Abstract

Recently developed methods for the non-parametric estimation of Hawkes point process models facilitate their application for describing and forecasting the spread of epidemic diseases. We use data from the 2014 Ebola outbreak in West Africa to evaluate how well a simple Hawkes point process model can forecast the spread of Ebola virus in Guinea, Sierra Leone, and Liberia. For comparison, SEIR models that fit previously to the same data are evaluated using identical metrics. To test the predictive power of each of the models, we simulate the ability to make near real-time predictions during an actual outbreak by using the first 75% of the data for estimation and the subsequent 25% of the data for evaluation. Forecasts generated from Hawkes models more accurately describe the spread of Ebola in each of the three countries investigated and result in a 38% reduction in RMSE for weekly case estimation across all countries when compared to SEIR models (total RMSE of 59.8 cases/week using SEIR compared to 37.1 for Hawkes). We demonstrate that the improved fit from Hawkes modeling cannot be attributed to overfitting and evaluate the advantages and disadvantages of Hawkes models in general for forecasting the spread of epidemic diseases.

摘要

最近开发的用于霍克斯点过程模型非参数估计的方法,便于其应用于描述和预测传染病的传播。我们使用2014年西非埃博拉疫情的数据,来评估一个简单的霍克斯点过程模型对几内亚、塞拉利昂和利比里亚埃博拉病毒传播的预测效果。作为对比,使用相同指标对之前拟合相同数据的SEIR模型进行评估。为测试每个模型的预测能力,我们通过使用前75%的数据进行估计,并使用随后25%的数据进行评估,来模拟在实际疫情期间进行近实时预测的能力。与SEIR模型相比,霍克斯模型生成的预测更准确地描述了在所调查的三个国家中埃博拉的传播情况,并且在所有国家的每周病例估计中,均方根误差(RMSE)降低了38%(SEIR模型的总RMSE为每周59.8例,而霍克斯模型为37.1例)。我们证明,霍克斯模型拟合度的提高并非归因于过度拟合,并总体评估了霍克斯模型在预测传染病传播方面的优缺点。

相似文献

1
A non-parametric Hawkes model of the spread of Ebola in west Africa.
J Appl Stat. 2020 Sep 26;49(3):621-637. doi: 10.1080/02664763.2020.1825646. eCollection 2022.
2
Nonparametric estimation of recursive point processes with application to mumps in Pennsylvania.
Biom J. 2022 Jan;64(1):20-32. doi: 10.1002/bimj.202000245. Epub 2021 Aug 23.
3
Estimating the Reproduction Number of Ebola Virus (EBOV) During the 2014 Outbreak in West Africa.
PLoS Curr. 2014 Sep 2;6:ecurrents.outbreaks.91afb5e0f279e7f29e7056095255b288. doi: 10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288.
4
Assessing the performance of real-time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15.
PLoS Comput Biol. 2019 Feb 11;15(2):e1006785. doi: 10.1371/journal.pcbi.1006785. eCollection 2019 Feb.
5
Forecasting the 2014 West African Ebola Outbreak.
Epidemiol Rev. 2019 Jan 31;41(1):34-50. doi: 10.1093/epirev/mxz013.
7
Inference and forecast of the current west african ebola outbreak in Guinea, sierra leone and liberia.
PLoS Curr. 2014 Oct 31;6:ecurrents.outbreaks.3408774290b1a0f2dd7cae877c8b8ff6. doi: 10.1371/currents.outbreaks.3408774290b1a0f2dd7cae877c8b8ff6.
9

引用本文的文献

1
Global infectious disease early warning models: An updated review and lessons from the COVID-19 pandemic.
Infect Dis Model. 2024 Dec 3;10(2):410-422. doi: 10.1016/j.idm.2024.12.001. eCollection 2025 Jun.
2
Rates of SARS-CoV-2 transmission between and into California state prisons.
medRxiv. 2023 Aug 25:2023.08.24.23294583. doi: 10.1101/2023.08.24.23294583.
3
BAYESIAN MITIGATION OF SPATIAL COARSENING FOR A HAWKES MODEL APPLIED TO GUNFIRE, WILDFIRE AND VIRAL CONTAGION.
Ann Appl Stat. 2022 Mar;16(1):573-595. doi: 10.1214/21-aoas1517. Epub 2022 Mar 28.
4
Current Landscape of Coccidioidomycosis.
J Fungi (Basel). 2022 Apr 17;8(4):413. doi: 10.3390/jof8040413.
5
Point Process Models for the Spread of Coccidioidomycosis in California.
Infect Dis Rep. 2021 Jun 16;13(2):558-570. doi: 10.3390/idr13020052.
6
Simple discrete-time self-exciting models can describe complex dynamic processes: A case study of COVID-19.
PLoS One. 2021 Apr 9;16(4):e0250015. doi: 10.1371/journal.pone.0250015. eCollection 2021.
7
A time-modulated Hawkes process to model the spread of COVID-19 and the impact of countermeasures.
Annu Rev Control. 2021;51:551-563. doi: 10.1016/j.arcontrol.2021.02.002. Epub 2021 Mar 12.

本文引用的文献

2
The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt.
Epidemics. 2018 Mar;22:13-21. doi: 10.1016/j.epidem.2017.08.002. Epub 2017 Aug 26.
3
Two approaches to forecast Ebola synthetic epidemics.
Epidemics. 2018 Mar;22:36-42. doi: 10.1016/j.epidem.2017.02.011. Epub 2017 Feb 24.
4
Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model.
Epidemics. 2018 Mar;22:56-61. doi: 10.1016/j.epidem.2016.11.003. Epub 2016 Dec 16.
5
Perspectives on West Africa Ebola Virus Disease Outbreak, 2013-2016.
Emerg Infect Dis. 2016 Jun;22(6):956-63. doi: 10.3201/eid2206.160021. Epub 2016 Jun 15.
6
Estimating the Reproduction Number of Ebola Virus (EBOV) During the 2014 Outbreak in West Africa.
PLoS Curr. 2014 Sep 2;6:ecurrents.outbreaks.91afb5e0f279e7f29e7056095255b288. doi: 10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288.
7
Ebola virus disease in West Africa--the first 9 months of the epidemic and forward projections.
N Engl J Med. 2014 Oct 16;371(16):1481-95. doi: 10.1056/NEJMoa1411100. Epub 2014 Sep 22.
8
A space-time conditional intensity model for invasive meningococcal disease occurrence.
Biometrics. 2012 Jun;68(2):607-16. doi: 10.1111/j.1541-0420.2011.01684.x. Epub 2011 Oct 9.
9
Stochastic epidemic models: a survey.
Math Biosci. 2010 May;225(1):24-35. doi: 10.1016/j.mbs.2010.01.006. Epub 2010 Jan 25.
10
Extending earthquakes' reach through cascading.
Science. 2008 Feb 22;319(5866):1076-9. doi: 10.1126/science.1148783.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验