Department of Obstetrics, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.
Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.
Sci Rep. 2022 Jun 16;12(1):10130. doi: 10.1038/s41598-022-14454-w.
We aimed to establish a computerized diagnostic model to predict placenta accrete spectrum (PAS) disorders based on T2-weighted MR imaging. We recruited pregnant women with clinically suspected PAS disorders between January 2015 and December 2018 in our institution. All preoperative T2-weighted imaging (T2WI) MR images were manually outlined on the picture archive communication system terminal server. A nnU-Net network for automatic segmentation and the corresponding radiomics features extracted from the segmented region were applied to build a radiomics-clinical model for PAS disorders identification. Taking the surgical or pathological findings as the reference standard, we compared this computerized model's diagnostic performance in detecting PAS disorders. In the training cohort, our model combining both radiomics and clinical characteristics yielded an accuracy of 0.771, a sensitivity of 0.854, and a specificity of 0.750 in identifying PAS disorders. In the testing cohort, this model achieved a segmentation mean Dice coefficient of 0.890 and yielded an accuracy of 0.825, a sensitivity of 0.830 and a specificity of 0.822. In the external validation cohort, this computer-aided diagnostic model yielded an accuracy of 0.690, a sensitivity of 0.929 and a specificity of 0.467 in identifying placenta increta. In the present study, a machine learning model based on preoperative T2WI-based imaging had high accuracy in identifying PAS disorders in respect of surgical and histological findings.
我们旨在建立一个基于 T2 加权磁共振成像(T2WI)的计算机诊断模型,以预测胎盘植入谱(PAS)疾病。我们在机构中招募了 2015 年 1 月至 2018 年 12 月期间临床怀疑患有 PAS 疾病的孕妇。所有术前 T2WI 磁共振成像(T2WI)图像均在图像存档通信系统终端服务器上手动勾画。应用 nnU-Net 网络进行自动分割,并从分割区域提取相应的放射组学特征,以建立用于 PAS 疾病识别的放射组学-临床模型。以手术或病理结果为参考标准,我们比较了计算机模型在检测 PAS 疾病方面的诊断性能。在训练队列中,我们的模型结合了放射组学和临床特征,在识别 PAS 疾病方面的准确率为 0.771,敏感度为 0.854,特异度为 0.750。在测试队列中,该模型的分割平均 Dice 系数为 0.890,准确率为 0.825,敏感度为 0.830,特异度为 0.822。在外部验证队列中,该计算机辅助诊断模型在识别胎盘植入方面的准确率为 0.690,敏感度为 0.929,特异度为 0.467。在本研究中,基于术前 T2WI 成像的机器学习模型在手术和组织学发现方面具有很高的识别 PAS 疾病的准确性。