文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于增强 CT 的肿瘤和瘤周放射组学分析预测肝癌切除术后早期和晚期复发。

Tumor and peritumor radiomics analysis based on contrast-enhanced CT for predicting early and late recurrence of hepatocellular carcinoma after liver resection.

机构信息

Department of Breast Surgery, The First Hospital of China Medical University, No.155 Nanjing Road, Heping District, Shenyang, 110000, Liaoning, China.

Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China.

出版信息

BMC Cancer. 2022 Jun 17;22(1):664. doi: 10.1186/s12885-022-09743-6.


DOI:10.1186/s12885-022-09743-6
PMID:35715783
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9205126/
Abstract

BACKGROUND: In China, liver resection has been proven to be one of the most important strategies for hepatocellular carcinoma patients, but the recurrence rate is high. This study sought to investigate the prognostic value of pretreatment tumor and peritumor contrast-enhanced CT radiomics features for early and late recurrence of BCLC stage 0-B hepatocellular carcinoma after liver resection. METHODS: This study involved 329 hepatocellular carcinoma patients after liver resection. A radiomics model was built by using Lasso-Cox regression model. Association between radiomics model and recurrence-free survival was explored by using Harrell's concordance index (C-Index) and receiver operating characteristic (ROC) curves. Then, we combined the radiomics model and clinical factors to establish a nomogram whose calibration and discriminatory ability were revealed. RESULTS: Ten significant tumor and peritumor features were screened to build the radiomics model whose C-indices were 0.743 [95% CI, 0.707 to 0.778] and 0.69 [95% CI, 0.629 to 0.751] in the training and validation cohorts. Moreover, the discriminative accuracy of the radiomics model improved with peritumor features entry. The C-indices of the combined model were 0.773 [95% CI, 0.739 to 0.806] and 0.727 [95% CI, 0.667 to 0.787] in the training and validation cohorts, outperforming the radiomics model. CONCLUSIONS: The tumor and peritumor contrast-enhanced CT radiomic signature is a quantitative imaging biomarker that could improve the prediction of early and late recurrence after liver resection for hepatocellular carcinoma patients when used in addition to clinical predictors.

摘要

背景:在中国,肝切除术已被证明是肝细胞癌患者的重要治疗策略之一,但复发率较高。本研究旨在探讨术前肿瘤和肿瘤周围增强 CT 放射组学特征对 BCLC 分期 0-B 肝细胞癌肝切除术后早期和晚期复发的预后价值。

方法:本研究纳入 329 例肝细胞癌肝切除术后患者。采用 Lasso-Cox 回归模型构建放射组学模型。采用 Harrell 一致性指数(C-指数)和受试者工作特征(ROC)曲线探讨放射组学模型与无复发生存的关系。然后,我们将放射组学模型与临床因素相结合,建立了一个可以展示校准和区分能力的列线图。

结果:筛选出 10 个显著的肿瘤和肿瘤周围特征来构建放射组学模型,其在训练和验证队列中的 C 指数分别为 0.743(95%CI:0.7070.778)和 0.69(95%CI:0.6290.751)。此外,肿瘤周围特征的引入提高了放射组学模型的判别准确性。联合模型在训练和验证队列中的 C 指数分别为 0.773(95%CI:0.7390.806)和 0.727(95%CI:0.6670.787),优于放射组学模型。

结论:肿瘤和肿瘤周围增强 CT 放射组学特征是一种定量成像生物标志物,当与临床预测因子联合使用时,可以提高肝细胞癌患者肝切除术后早期和晚期复发的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c57/9205126/a0a468ad6464/12885_2022_9743_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c57/9205126/9ea79b1c2daa/12885_2022_9743_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c57/9205126/e59d169f3a61/12885_2022_9743_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c57/9205126/3597de243700/12885_2022_9743_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c57/9205126/4204233ec8b6/12885_2022_9743_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c57/9205126/86497dcf258d/12885_2022_9743_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c57/9205126/a0a468ad6464/12885_2022_9743_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c57/9205126/9ea79b1c2daa/12885_2022_9743_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c57/9205126/e59d169f3a61/12885_2022_9743_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c57/9205126/3597de243700/12885_2022_9743_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c57/9205126/4204233ec8b6/12885_2022_9743_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c57/9205126/86497dcf258d/12885_2022_9743_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c57/9205126/a0a468ad6464/12885_2022_9743_Fig6_HTML.jpg

相似文献

[1]
Tumor and peritumor radiomics analysis based on contrast-enhanced CT for predicting early and late recurrence of hepatocellular carcinoma after liver resection.

BMC Cancer. 2022-6-17

[2]
Preoperative contrast-enhanced computed tomography-based radiomics model for overall survival prediction in hepatocellular carcinoma.

World J Gastroenterol. 2022-8-21

[3]
Prediction of early recurrence of hepatocellular carcinoma after liver transplantation based on computed tomography radiomics nomogram.

Hepatobiliary Pancreat Dis Int. 2022-12

[4]
A radiomics nomogram for the prediction of overall survival in patients with hepatocellular carcinoma after hepatectomy.

Cancer Imaging. 2020-11-16

[5]
Preoperative Radiomics Nomogram Based on CT Image Predicts Recurrence-Free Survival After Surgical Resection of Hepatocellular Carcinoma.

Acad Radiol. 2023-8

[6]
CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma.

Abdom Radiol (NY). 2017-6

[7]
Radiomics model based on contrast-enhanced computed tomography imaging for early recurrence monitoring after radical resection of AFP-negative hepatocellular carcinoma.

BMC Cancer. 2024-6-7

[8]
Radiomics model based on contrast-enhanced computed tomography to predict early recurrence in patients with hepatocellular carcinoma after radical resection.

World J Gastroenterol. 2023-7-14

[9]
Prediction early recurrence of hepatocellular carcinoma eligible for curative ablation using a Radiomics nomogram.

Cancer Imaging. 2019-4-26

[10]
Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study.

EBioMedicine. 2019-11-15

引用本文的文献

[1]
Development and validation of a prediction model for lymph node metastasis in thyroid cancer: integrating deep learning and radiomics features from intra- and peri-tumoral regions.

Gland Surg. 2025-7-31

[2]
Preoperative model for predicting early recurrence in hepatocellular carcinoma patients using radiomics and deep learning: A multicenter study.

World J Gastrointest Oncol. 2025-6-15

[3]
Multi-omics integration of TPX2 in prognostic prediction in resectable hepatocellular carcinoma.

Discov Oncol. 2025-6-12

[4]
Gd-EOB-DTPA-enhanced MRI radiomics and deep learning models to predict microvascular invasion in hepatocellular carcinoma: a multicenter study.

BMC Med Imaging. 2025-3-31

[5]
F-FDG PET/CT-based intratumoral and peritumoral radiomics combining ensemble learning for prognosis prediction in hepatocellular carcinoma: a multi-center study.

BMC Cancer. 2025-2-19

[6]
Prediction of early postoperative recurrence of hepatocellular carcinoma by habitat analysis based on different sequence of contrast-enhanced CT.

Front Oncol. 2025-1-3

[7]
Preoperative Noninvasive Prediction of Recurrence-Free Survival in Hepatocellular Carcinoma Using CT-Based Radiomics Model.

J Hepatocell Carcinoma. 2024-11-14

[8]
Radiomics as a tool for prognostic prediction in transarterial chemoembolization for hepatocellular carcinoma: a systematic review and meta-analysis.

Radiol Med. 2024-8

[9]
MRI-based intratumoral and peritumoral radiomics for preoperative prediction of glioma grade: a multicenter study.

Front Oncol. 2024-5-13

[10]
Radiomics features based on dual-area CT predict the expression levels of fatty acid binding protein 4 and outcome in hepatocellular carcinoma.

Abdom Radiol (NY). 2024-6

本文引用的文献

[1]
Radiomics feature reliability assessed by intraclass correlation coefficient: a systematic review.

Quant Imaging Med Surg. 2021-10

[2]
2019 Chinese clinical guidelines for the management of hepatocellular carcinoma: updates and insights.

Hepatobiliary Surg Nutr. 2020-8

[3]
Radiomics-based nomogram using CT imaging for noninvasive preoperative prediction of early recurrence in patients with hepatocellular carcinoma.

Diagn Interv Radiol. 2020-9

[4]
Radiomics: from qualitative to quantitative imaging.

Br J Radiol. 2020-2-26

[5]
Radiomics Signature as a Predictive Factor for EGFR Mutations in Advanced Lung Adenocarcinoma.

Front Oncol. 2020-1-31

[6]
Radiomic Features at Contrast-enhanced CT Predict Recurrence in Early Stage Hepatocellular Carcinoma: A Multi-Institutional Study.

Radiology. 2020-1-14

[7]
Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study.

EBioMedicine. 2019-11-15

[8]
Application of CT radiomics in prediction of early recurrence in hepatocellular carcinoma.

Abdom Radiol (NY). 2020-1

[9]
Prognosis After Resection of Barcelona Clinic Liver Cancer (BCLC) Stage 0, A, and B Hepatocellular Carcinoma: A Comprehensive Assessment of the Current BCLC Classification.

Ann Surg Oncol. 2019-7-2

[10]
Hepatocellular carcinoma: radiomics nomogram on gadoxetic acid-enhanced MR imaging for early postoperative recurrence prediction.

Cancer Imaging. 2019-5-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索