Suppr超能文献

使用不同分割软件对肺实质进行不同量化:一项针对新冠肺炎患者的多中心研究

Different Lung Parenchyma Quantification Using Dissimilar Segmentation Software: A Multi-Center Study for COVID-19 Patients.

作者信息

Risoli Camilla, Nicolò Marco, Colombi Davide, Moia Marco, Rapacioli Fausto, Anselmi Pietro, Michieletti Emanuele, Ambrosini Roberta, Di Terlizzi Marco, Grazioli Luigi, Colmo Cristian, Di Naro Angelo, Natale Matteo Pio, Tombolesi Alessandro, Adraman Altin, Tuttolomondo Domenico, Costantino Cosimo, Vetti Elisa, Martini Chiara

机构信息

Department of Radiological Function, "Guglielmo da Saliceto" Hospital, Via Taverna 49, 29121 Piacenza, Italy.

Department of Diagnostic Imaging, Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy.

出版信息

Diagnostics (Basel). 2022 Jun 20;12(6):1501. doi: 10.3390/diagnostics12061501.

Abstract

BACKGROUND

Chest Computed Tomography (CT) imaging has played a central role in the diagnosis of interstitial pneumonia in patients affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and can be used to obtain the extent of lung involvement in COVID-19 pneumonia patients either qualitatively, via visual inspection, or quantitatively, via AI-based software. This study aims to compare the qualitative/quantitative pathological lung extension data on COVID-19 patients. Secondly, the quantitative data obtained were compared to verify their concordance since they were derived from three different lung segmentation software.

METHODS

This double-center study includes a total of 120 COVID-19 patients (60 from each center) with positive reverse-transcription polymerase chain reaction (RT-PCR) who underwent a chest CT scan from November 2020 to February 2021. CT scans were analyzed retrospectively and independently in each center. Specifically, CT images were examined manually by two different and experienced radiologists for each center, providing the qualitative extent score of lung involvement, whereas the quantitative analysis was performed by one trained radiographer for each center using three different software: , , and .

RESULTS

The agreement between radiologists for visual estimation of pneumonia at CT can be defined as good (ICC 0.79, 95% CI 0.73-0.84). The statistical tests show that 3DSlicer overestimates the measures assessed; however, ICC index returns a value of 0.92 (CI 0.90-0.94), indicating excellent reliability within the three software employed. ICC was also performed between each single software and the median of the visual score provided by the radiologists. This statistical analysis underlines that the best agreement is between 3D Slicer "LungCTAnalyzer" and the median of the visual score (0.75 with a CI 0.67-82 and with a median value of 22% of disease extension for the software and 25% for the visual values).

CONCLUSIONS

This study provides for the first time a direct comparison between the actual gold standard, which is represented by the qualitative information described by radiologists, and novel quantitative AI-based techniques, here represented by three different commonly used lung segmentation software, underlying the importance of these specific values that in the future could be implemented as consistent prognostic and clinical course parameters.

摘要

背景

胸部计算机断层扫描(CT)成像在严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染患者的间质性肺炎诊断中发挥了核心作用,可用于定性(通过目视检查)或定量(通过基于人工智能的软件)获取COVID-19肺炎患者的肺部受累程度。本研究旨在比较COVID-19患者的定性/定量病理性肺扩展数据。其次,对获得的定量数据进行比较,以验证其一致性,因为这些数据来自三种不同的肺分割软件。

方法

这项双中心研究共纳入120例COVID-19患者(每个中心60例),这些患者的逆转录聚合酶链反应(RT-PCR)呈阳性,于2020年11月至2021年2月接受了胸部CT扫描。每个中心对CT扫描进行回顾性独立分析。具体而言,每个中心由两名不同的经验丰富的放射科医生手动检查CT图像,提供肺部受累的定性程度评分,而每个中心由一名经过培训的放射技师使用三种不同的软件进行定量分析: 、 和 。

结果

放射科医生在CT上对肺炎的视觉估计之间的一致性可定义为良好(ICC 0.79,95%CI 0.73 - 0.84)。统计测试表明3DSlicer高估了评估的测量值;然而,ICC指数返回值为0.92(CI 0.90 - 0.94),表明在所使用的三种软件中具有出色的可靠性。还对每个单一软件与放射科医生提供的视觉评分中位数进行了ICC分析。该统计分析强调,最佳一致性出现在3D Slicer“LungCTAnalyzer”与视觉评分中位数之间(0.75,CI 0.67 - 82,软件疾病扩展的中位数为22%,视觉值为25%)。

结论

本研究首次对实际的金标准(以放射科医生描述的定性信息为代表)与基于人工智能的新型定量技术(以三种不同的常用肺分割软件为代表)进行了直接比较,突出了这些特定值的重要性,未来这些值可作为一致的预后和临床病程参数实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7804/9222070/d23ee9dfd248/diagnostics-12-01501-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验