Suppr超能文献

分析真实世界纵向职业健康数据中的方法学问题:探讨该主题的有用指南。

Methodological Issues in Analyzing Real-World Longitudinal Occupational Health Data: A Useful Guide to Approaching the Topic.

机构信息

CNRS, LaPSCo, Physiological and Psychosocial Stress, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.

Preventive and Occupational Medicine, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France.

出版信息

Int J Environ Res Public Health. 2022 Jun 8;19(12):7023. doi: 10.3390/ijerph19127023.

Abstract

Ever greater technological advances and democratization of digital tools such as computers and smartphones offer researchers new possibilities to collect large amounts of health data in order to conduct clinical research. Such data, called real-world data, appears to be a perfect complement to traditional randomized clinical trials and has become more important in health decisions. Due to its longitudinal nature, real-world data is subject to specific and well-known methodological issues, namely issues with the analysis of cluster-correlated data, missing data and longitudinal data itself. These concepts have been widely discussed in the literature and many methods and solutions have been proposed to cope with these issues. As examples, mixed and trajectory models have been developed to explore longitudinal data sets, imputation methods can resolve missing data issues, and multilevel models facilitate the treatment of cluster-correlated data. Nevertheless, the analysis of real-world longitudinal occupational health data remains difficult, especially when the methodological challenges overlap. The purpose of this article is to present various solutions developed in the literature to deal with cluster-correlated data, missing data and longitudinal data, sometimes overlapped, in an occupational health context. The novelty and usefulness of our approach is supported by a step-by-step search strategy and an example from the Wittyfit database, which is an epidemiological database of occupational health data. Therefore, we hope that this article will facilitate the work of researchers in the field and improve the accuracy of future studies.

摘要

日益先进的技术进步和计算机、智能手机等数字工具的民主化,为研究人员提供了新的可能性,可以收集大量健康数据来进行临床研究。这种数据被称为真实世界数据,似乎是对传统随机临床试验的完美补充,在健康决策中变得越来越重要。由于其纵向性质,真实世界的数据存在特定且众所周知的方法学问题,即与聚类相关的数据、缺失数据和纵向数据本身的分析问题。这些概念在文献中已经得到了广泛的讨论,并且已经提出了许多方法和解决方案来应对这些问题。例如,混合和轨迹模型已被开发用于探索纵向数据集,插补方法可以解决缺失数据问题,多层次模型有助于处理聚类相关数据。然而,真实世界的纵向职业健康数据的分析仍然很困难,尤其是当方法学挑战重叠时。本文的目的是介绍文献中提出的各种解决方案,以处理职业健康背景下有时重叠的聚类相关数据、缺失数据和纵向数据。我们的方法的新颖性和有用性得到了逐步搜索策略和来自 Wittyfit 数据库的示例的支持,Wittyfit 数据库是一个职业健康数据的流行病学数据库。因此,我们希望本文将有助于该领域研究人员的工作,并提高未来研究的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d1f/9222958/150e08641104/ijerph-19-07023-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验