Suppr超能文献

使用深度学习与放射组学预测弥漫性胶质瘤中的MGMT启动子甲基化

Predicting MGMT Promoter Methylation in Diffuse Gliomas Using Deep Learning with Radiomics.

作者信息

Chen Sixuan, Xu Yue, Ye Meiping, Li Yang, Sun Yu, Liang Jiawei, Lu Jiaming, Wang Zhengge, Zhu Zhengyang, Zhang Xin, Zhang Bing

机构信息

Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.

National Institute of Healthcare Data Science, Nanjing University, Nanjing 210023, China.

出版信息

J Clin Med. 2022 Jun 15;11(12):3445. doi: 10.3390/jcm11123445.

Abstract

This study aimed to investigate the feasibility of predicting oxygen 6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in diffuse gliomas by developing a deep learning approach using MRI radiomics. A total of 111 patients with diffuse gliomas participated in the retrospective study (56 patients with MGMT promoter methylation and 55 patients with MGMT promoter unmethylation). The radiomics features of the two regions of interest (ROI) (the whole tumor area and the tumor core area) for four sequences, including T1 weighted image (T1WI), T2 weighted image (T2WI), apparent diffusion coefficient (ADC) maps, and T1 contrast-enhanced (T1CE) MR images were extracted and jointly fed into the residual network. Then the deep learning method was developed and evaluated with a five-fold cross-validation, where in each fold, the dataset was randomly divided into training (80%) and validation (20%) cohorts. We compared the performance of all models using area under the curve (AUC) and average accuracy of validation cohorts and calculated the 10 most important features of the best model via a class activation map. Based on the ROI of the whole tumor, the predictive capacity of the T1CE and ADC model achieved the highest AUC value of 0.85. Based on the ROI of the tumor core, the T1CE and ADC model achieved the highest AUC value of 0.90. After comparison, the T1CE combined with the ADC model based on the ROI of the tumor core exhibited the best performance, with the highest average accuracy (0.91) and AUC (0.90) among all models. The deep learning method using MRI radiomics has excellent diagnostic performance with a high accuracy in predicting MGMT promoter methylation in diffuse gliomas.

摘要

本研究旨在通过开发一种使用MRI放射组学的深度学习方法,探讨预测弥漫性胶质瘤中氧-6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)启动子甲基化的可行性。共有111例弥漫性胶质瘤患者参与了这项回顾性研究(56例MGMT启动子甲基化患者和55例MGMT启动子未甲基化患者)。提取了四个序列(包括T1加权图像(T1WI)、T2加权图像(T2WI)、表观扩散系数(ADC)图和T1对比增强(T1CE)MR图像)的两个感兴趣区域(ROI)(整个肿瘤区域和肿瘤核心区域)的放射组学特征,并将其联合输入残差网络。然后,采用五折交叉验证开发并评估深度学习方法,在每一折中,将数据集随机分为训练(80%)和验证(20%)队列。我们使用曲线下面积(AUC)和验证队列的平均准确率比较了所有模型的性能,并通过类激活图计算了最佳模型的10个最重要特征。基于整个肿瘤的ROI,T1CE和ADC模型的预测能力达到了最高AUC值0.85。基于肿瘤核心的ROI,T1CE和ADC模型达到了最高AUC值0.90。比较后,基于肿瘤核心ROI的T1CE与ADC模型表现出最佳性能,在所有模型中平均准确率最高(0.91),AUC最高(0.90)。使用MRI放射组学的深度学习方法在预测弥漫性胶质瘤中MGMT启动子甲基化方面具有优异的诊断性能和高准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9576/9224690/8f46a1e7cbb8/jcm-11-03445-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验