Suppr超能文献

利用可变 Vision Transformer 对成人弥漫性神经胶质瘤患者 O6-甲基鸟嘌呤-DNA 甲基转移酶状态进行预测的关键因素识别:多模态分析的人口统计学、影像组学和 MRI

Identifying key factors for predicting O6-Methylguanine-DNA methyltransferase status in adult patients with diffuse glioma: a multimodal analysis of demographics, radiomics, and MRI by variable Vision Transformer.

机构信息

Department of Diagnostic Radiology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Miyagi, 980-8574, Japan.

Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Miyagi, 980-8573, Japan.

出版信息

Neuroradiology. 2024 May;66(5):761-773. doi: 10.1007/s00234-024-03329-8. Epub 2024 Mar 12.

Abstract

PURPOSE

This study aimed to perform multimodal analysis by vision transformer (vViT) in predicting O6-methylguanine-DNA methyl transferase (MGMT) promoter status among adult patients with diffuse glioma using demographics (sex and age), radiomic features, and MRI.

METHODS

The training and test datasets contained 122 patients with 1,570 images and 30 patients with 484 images, respectively. The radiomic features were extracted from enhancing tumors (ET), necrotic tumor cores (NCR), and the peritumoral edematous/infiltrated tissues (ED) using contrast-enhanced T1-weighted images (CE-T1WI) and T2-weighted images (T2WI). The vViT had 9 sectors; 1 demographic sector, 6 radiomic sectors (CE-T1WI ET, CE-T1WI NCR, CE-T1WI ED, T2WI ET, T2WI NCR, and T2WI ED), 2 image sectors (CE-T1WI, and T2WI). Accuracy and area under the curve of receiver-operating characteristics (AUC-ROC) were calculated for the test dataset. The performance of vViT was compared with AlexNet, GoogleNet, VGG16, and ResNet by McNemar and Delong test. Permutation importance (PI) analysis with the Mann-Whitney U test was performed.

RESULTS

The accuracy was 0.833 (95% confidence interval [95%CI]: 0.714-0.877) and the area under the curve of receiver-operating characteristics was 0.840 (0.650-0.995) in the patient-based analysis. The vViT had higher accuracy than VGG16 and ResNet, and had higher AUC-ROC than GoogleNet (p<0.05). The ED radiomic features extracted from the T2-weighted image demonstrated the highest importance (PI=0.239, 95%CI: 0.237-0.240) among all other sectors (p<0.0001).

CONCLUSION

The vViT is a competent deep learning model in predicting MGMT status. The ED radiomic features of the T2-weighted image demonstrated the most dominant contribution.

摘要

目的

本研究旨在通过视觉转换器(vViT)对成人弥漫性神经胶质瘤患者的人口统计学信息(性别和年龄)、影像组学特征和 MRI 进行多模态分析,以预测 O6-甲基鸟嘌呤-DNA 甲基转移酶(MGMT)启动子状态。

方法

训练集和测试集分别包含 122 名患者的 1570 张图像和 30 名患者的 484 张图像。使用对比增强 T1 加权图像(CE-T1WI)和 T2 加权图像(T2WI)从增强肿瘤(ET)、坏死肿瘤核心(NCR)和瘤周水肿/浸润组织(ED)中提取影像组学特征。vViT 有 9 个区域,1 个人口统计学区域,6 个影像组学区域(CE-T1WI ET、CE-T1WI NCR、CE-T1WI ED、T2WI ET、T2WI NCR 和 T2WI ED),2 个图像区域(CE-T1WI 和 T2WI)。计算测试数据集的准确性和受试者工作特征曲线下面积(AUC-ROC)。通过 McNemar 和 Delong 检验比较 vViT 与 AlexNet、GoogleNet、VGG16 和 ResNet 的性能。使用 Mann-Whitney U 检验进行置换重要性(PI)分析。

结果

基于患者的分析中,准确性为 0.833(95%置信区间[95%CI]:0.714-0.877),受试者工作特征曲线下面积为 0.840(0.650-0.995)。vViT 的准确性高于 VGG16 和 ResNet,AUC-ROC 高于 GoogleNet(p<0.05)。T2 加权图像中提取的 ED 影像组学特征具有最高的重要性(PI=0.239,95%CI:0.237-0.240),高于其他所有区域(p<0.0001)。

结论

vViT 是一种预测 MGMT 状态的有能力的深度学习模型。T2 加权图像的 ED 影像组学特征具有最主要的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50bd/11031474/a8880f9de45d/234_2024_3329_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验