Suppr超能文献

利用贝叶斯优化发现新型糖基化方法:锂盐导向的立体选择性糖基化

Discovery of novel glycosylation methods using Bayesian optimization: lithium salt directed stereoselective glycosylations.

作者信息

Faurschou Natasha Videcrantz, Pedersen Christian Marcus

机构信息

Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark

出版信息

Chem Sci. 2025 Jul 8. doi: 10.1039/d5sc03244j.

Abstract

In recent years, Bayesian optimization has gained increasing interest as a tool for reaction optimization. Here we use Bayesian optimization in a reaction discovery fashion by treating the glycosylation reaction class as a black box function. This provides access to new areas of the glycosylation reaction space and leads to the discovery of novel stereoselective glycosylation methodologies, where stereoselectivity can be directed by the addition of lithium salts in interplay with other reaction conditions. Black box functions are inherently difficult to interpret, but we show how partial dependence plots can be used to infer trends from the obtained data in a similar fashion to the commonly used one-variable-at-time approach.

摘要

近年来,贝叶斯优化作为一种反应优化工具越来越受到关注。在这里,我们以反应发现的方式使用贝叶斯优化,将糖基化反应类别视为一个黑箱函数。这为进入糖基化反应空间的新领域提供了途径,并导致发现了新的立体选择性糖基化方法,其中立体选择性可以通过添加锂盐并与其他反应条件相互作用来引导。黑箱函数本质上难以解释,但我们展示了如何使用偏依赖图以与常用的一次一个变量的方法类似的方式从获得的数据中推断趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d73/12376856/845a12779ae9/d5sc03244j-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验