Robinson Andrew J, Pérez-Nava Alejandra, Ali Shan C, González-Campos J Betzabe, Holloway Julianne L, Cosgriff-Hernandez Elizabeth M
Department of Biomedical Engineering, University of Texas, Austin, Texas, 78712, United States.
Biological and Chemical Research Institute, Universidad Michoacana de San Nicolás, de Hidalgo, Morelia, 58030, Mexico.
Matter. 2021 Mar 3;4(3):821-844. doi: 10.1016/j.matt.2020.12.022.
Fabrication of anisotropic materials is highly desirable in designing biomaterials and tissue engineered constructs. Electrospinning has been broadly adopted due to its versatility in producing non-woven fibrous meshes with tunable fiber diameters (from 10 nanometers to 10 microns), microarchitectures, and construct geometries. A myriad of approaches have been utilized to control fiber alignment of electrospun materials to achieve complex microarchitectures, improve mechanical properties, and provide topographical cellular cues. This review provides a comparative analysis of the techniques developed to generate fiber alignment in electrospun materials. A description of the underlying mechanisms that drive fiber alignment, setup variations for each technique, and the resulting impact on the aligned microarchitecture is provided. A critical analysis of the advantages and limitations of each approach is provided to guide researchers in method selection. Finally, future perspectives of advanced electrospinning methodologies are discussed in terms of developing a scalable method with precise control of microarchitecture.
在生物材料和组织工程构建体的设计中,非常需要制造各向异性材料。由于静电纺丝在生产具有可调纤维直径(从10纳米到10微米)、微观结构和构建体几何形状的非织造纤维网方面具有多功能性,因此已被广泛采用。人们已经采用了无数方法来控制静电纺丝材料的纤维排列,以实现复杂的微观结构、改善机械性能并提供地形学细胞线索。本文综述对为在静电纺丝材料中产生纤维排列而开发的技术进行了比较分析。介绍了驱动纤维排列的潜在机制、每种技术的设置变化以及对排列后的微观结构的影响。对每种方法的优缺点进行了批判性分析,以指导研究人员选择方法。最后,从开发一种能够精确控制微观结构的可扩展方法的角度讨论了先进静电纺丝方法的未来前景。